Previous |  Up |  Next


biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos
The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical simulations are given to verify our conclusion.
[1] Borzova, E., Hurmuzlu, Y.: Passively walking five-link robot. Automatica 40 (2004), 4, 621-629. DOI 10.1016/j.automatica.2003.10.015 | MR 2151480 | Zbl 1070.93033
[2] Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science 307 (2005), 1082-1085. DOI 10.1126/science.1107799
[3] Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: Stability, complexity, and scaling. J. Biomech. Engrg. 120 (1998), 2, 281-288. DOI 10.1115/1.2798313
[4] Goswami, A., Thuilot, B, Espiau, B.: Compass-like biped robot Part I: Stability and bifurcation of passive gaits. IINRIA Res. Rep. No. 2996, 1996.
[5] Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: Symmetry and chaos. Internat. J. Robotics Res. 17 (1998), 12, 1282-1301. DOI 10.1177/027836499801701202
[6] Grizzle, J. W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Trans. Automat. Control 46 (2001), 1, 51-64. DOI 10.1109/9.898695 | MR 1809465 | Zbl 0992.93058
[7] Hiskens, I.: Stability of hybrid system limit cycles: Application to the compass gait biped robot. In: Proc. IEEE Conference on Decision and Control, Orlando 2001.
[8] Holm, J. K.: Control of Passive Dynamic Robots Using Artificial Potential Energy Fields. M. S. Thesis, Univ. Illinois Urbana-Champaign 2005.
[9] Holm, J. K., Lee, D. J., Spong, M. W.: Time scaling for speed regulation in bipedal locomotion. In: Proc. IEEE Conference Robotics Automation, Rome 2007, pp. 3603-3608.
[10] Ikemata, Y., Sano, A., Fusimoto, H.: Analysis of stable limit cycle in passive walking. In: SICE Anual Conference, Fubukui 2003, pp. 117-122.
[11] Kim, J., Choi, C., Spong, M. W.: Passive dynamic walking with symmetric fixed flat feet. In: Proc. IEEE International Conference on Control and Automation, Guangzhou 2007, pp. 24-30.
[12] Kuo, A. D.: Stabilization of lateral motion in passive dynamic walking. Internat. J. Robotics Res. 18 (1999), 9, 917-930. DOI 10.1177/02783649922066655
[13] Kurz, M. J., Judkins, T. N., Arellano, C., Scott-Pandorf, M.: A passive dynamic walking robot that has a deterministic nonlinear gait. J. Biomech. 41 (2008), 6, 1310-1316. DOI 10.1016/j.jbiomech.2008.01.007
[14] Kurz, M. J., Stergiou, N.: An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biolog. Cybernet. 93 (2005), 3, 213-221. DOI 10.1007/s00422-005-0579-6 | Zbl 1116.92005
[15] Kurz, M. J., Stergiou, N.: Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model. J. Biomech. Engrg. 129 (2007), 2, 216-222. DOI 10.1115/1.2486008
[16] Lin, X., Ding, Y., Shen, M., Li, S.: Feedback stabilization of unstable periodic orbits for chaotic passive compass-like biped robot. In: Proc. 7th World Congress on Intelligent Control and Automation, Chongqing 2008, pp. 7285-7290.
[17] McGeer, T.: Passive dynamic walking. Internat. J. Robotics Res. 9 (1990), 2, 62-68. DOI 10.1177/027836499000900206
[18] McGeer, T.: Passive walking with knees. In: Proc. IEEE Conference on Robotics and Automation, Cincinnati 1990, pp. 1640-1645.
[19] Miller, D. J., Stergiou, N., Kurz, M. J.: An improved surrogate method for detecting the presence of chaos in gait. J. Biomech. 39 (2006), 15, 2873-2876. DOI 10.1016/j.jbiomech.2005.10.019
[20] Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge 1993. MR 1924000 | Zbl 1006.37001
[21] Parker, T. S., Chua, L. O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York 1989. MR 1009561 | Zbl 0692.58001
[22] Seydel, R.: Practical Bifurcation and Stability Analysis. Second edition. Springer-Verlag, New York 1994. MR 1314200
[23] Spong, M. W.: Passivity based control of the compass gait biped. In: Proc. World Congress of IFAC, Beijing 1999, pp. 19-24.
[24] Spong, M. W., Bhatia, G.: Further results on control of the compass gait biped. In: Proc. IEEE International Conference on Intelligent Robots and Systems, Las Vegas 2003, pp. 1933-1938.
[25] Spong, M. W., Bullo, F.: Controlled symmetries and passive walking. IEEE Trans. Automat. Control 50 (2005), 7, 1025-1031. DOI 10.1109/TAC.2005.851449 | MR 2151568
[26] Stergiou, N., Buzzi, U. H., Kurz, M. J., Heidel, J.: Nonlinear tools in human movement. In: Innovative Analysis of Human Movement, Human Kinetics (N. Stergiou, ed.), Champaign 2004.
[27] Wisse, M., Schwab, A. L., Helm, F. C. T. Van der: Passive dynamic walking model with upper body. Robotica 22 (2004), 6, 681-688. DOI 10.1017/S0263574704000475
Partner of
EuDML logo