Previous |  Up |  Next

Article

Title: Solvable extensions of a special class of nilpotent Lie algebras (English)
Author: Shabanskaya, A.
Author: Thompson, G.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 3
Year: 2013
Pages: 141-159
Summary lang: English
.
Category: math
.
Summary: A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time. (English)
Keyword: solvable Lie algebra
Keyword: nilradical
Keyword: derivation
MSC: 17B05
MSC: 17B30
MSC: 17B40
idZBL: Zbl 06321155
idMR: MR3144179
DOI: 10.5817/AM2013-3-141
.
Date available: 2013-12-02T11:23:18Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143528
.
Reference: [1] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Solvable Lie algebras with naturally graded nilradicals and their invariants.J. Phys. A 39 (6) (2006), 1339–1355. Zbl 1095.17003, MR 2202805, 10.1088/0305-4470/39/6/008
Reference: [2] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Classification of Lie algebras with naturally graded quasi–filiform nilradicals.J. Geom. Phys. 61 (11) (2011), 2168–2186. Zbl 1275.17023, MR 2827117, 10.1016/j.geomphys.2011.06.015
Reference: [3] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants.J. Phys. A 43 (14) (2010), 18pp., 145202. MR 2606433, 10.1088/1751-8113/43/14/145202
Reference: [4] Cartan, E.: Sur la structure des groupes de transformations finis et continus.Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. Zbl 0007.10204
Reference: [5] Gantmacher, F.: On the classification of real simple Lie groups.Mat. Sb. (1950), 103–112.
Reference: [6] Gong, M.–P.: Classification of nilpotent Lie algebras of dimension $7$.Ph.D. thesis, University of Waterloo, 1998.
Reference: [7] Hindeleh, F., Thompson, G.: Seven dimensional Lie algebras with a four-dimensional nilradical.Algebras Groups Geom. 25 (3) (2008), 243–265. Zbl 1210.17016, MR 2522804
Reference: [8] Humphreys, J.: Lie algebras and their representations.Springer, 1997.
Reference: [9] Jacobson, N.: Lie algebras.Interscience Publishers, 1962. Zbl 0121.27504, MR 0143793
Reference: [10] Morozov, V. V.: Classification of nilpotent Lie algebras in dimension six.Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. MR 0130326
Reference: [11] Mubarakzyanov, G. M.: Classification of real Lie algebras in dimension five.Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. MR 0155871
Reference: [12] Mubarakzyanov, G. M.: Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element.Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. MR 0155872
Reference: [13] Mubarakzyanov, G. M.: On solvable Lie algebras.Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. Zbl 0166.04104, MR 0153714
Reference: [14] Ndogmo, J. C., Winternitz, P.: Solvable Lie algebras with abelian nilradicals.J. Phys. A 27 (2) (1994), 405–423. Zbl 0835.17007, MR 1267422, 10.1088/0305-4470/27/2/024
Reference: [15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras.J. Math. Phys. 17 (1976), 986–994. Zbl 0357.17004, MR 0404362, 10.1063/1.522992
Reference: [16] Rubin, J. L., Winternitz, P.: Solvable Lie algebras with Heisenberg ideals.J. Phys. A 26 (1993), 1123–1138. Zbl 0773.17004, MR 1211350, 10.1088/0305-4470/26/5/031
Reference: [17] Seeley, C.: $7$–dimensional nilpotent Lie algebra.Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. MR 1068933
Reference: [18] Shabanskaya, A.: Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over $\mathbb{R}$.Ph.D. thesis, University of Toledo, 2011. MR 2890187
Reference: [19] Shabanskaya, A., Thompson, G.: Six–dimensional Lie algebras with a five–dimensional nilradical.J. Lie Theory 23 (2) (2013), 313–355. Zbl 1280.17014, MR 3113513
Reference: [20] Skjelbred, T., Sund, T.: Classification of nilpotent Lie algebras in dimension six.University of Oslo, 1977, preprint.
Reference: [21] Snobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras.J. Phys. A 43 (50) (2010), 17pp. Zbl 1231.17004, MR 2740380, 10.1088/1751-8113/43/50/505202
Reference: [22] Snobl, L.: Maximal solvable extensions of filiform algebras.Arch. Math. (Brno 47 (5) (2011), 405–414. Zbl 1265.17017, MR 2876944
Reference: [23] Snobl, L., Karasek, D.: Classification of solvable Lie algebras with a given nilradical by means of solvable extensions of its subalgebras.Linear Algebra Appl. 432 (7) (2010), 18/36–1850. Zbl 1223.17017, MR 2592920, 10.1016/j.laa.2009.11.035
Reference: [24] Snobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants.J. Phys. A 38 (12) (2005), 2687–2700. Zbl 1063.22023, MR 2132082, 10.1088/0305-4470/38/12/011
Reference: [25] Snobl, L., Winternitz, P.: All solvable extensions of a class of nilpotent Lie algebras of dimension $n$ and degree of nilpotency $n-1$.J. Phys. A 2009 (2009), 16pp., 105201. Zbl 1178.17009, MR 2485857
Reference: [26] Tremblay, S., Winternitz, P.: Solvable Lie algebras with triangular nilradicals.J. Phys. A. 31 (2) (1998), 789–806. Zbl 1001.17011, MR 1629163, 10.1088/0305-4470/31/2/033
Reference: [27] Turkowski, P.: Solvable Lie algebras of dimension six.J. Math. Phys. 31 (6) (1990), 1344–1350. Zbl 0722.17012, MR 1054322, 10.1063/1.528721
Reference: [28] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null.Ph.D. thesis, University of Leipzig, 1891.
Reference: [29] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes.Bull. Math. Soc. France 78 (1970), 81–116. Zbl 0244.17011, MR 0289609
Reference: [30] Wang, Y., Lin, J., Deng, S.: Solvable Lie algebras with quasifiliform nilradicals.Comm. Algebra 36 (11) (2008), 4052–4067. Zbl 1230.17007, MR 2460402, 10.1080/00927870802174629
.

Files

Files Size Format View
ArchMathRetro_049-2013-3_1.pdf 589.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo