Previous |  Up |  Next

Article

Title: Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$ (English)
Author: Dostálová, Marie
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 3
Year: 2013
Pages: 161-185
Summary lang: English
.
Category: math
.
Summary: We introduce the symplectic twistor operator $T_s$ in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on ${\mathbb{R}}^2$. (English)
Keyword: symplectic spin geometry
Keyword: metaplectic Howe duality
Keyword: symplectic twistor operator
Keyword: symplectic Dirac operator
MSC: 53C27
MSC: 53D05
MSC: 81R25
idZBL: Zbl 06321156
idMR: MR3144180
DOI: 10.5817/AM2013-3-161
.
Date available: 2013-12-02T11:23:58Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143530
.
Reference: [1] Baum, H., Friedrich, T., Kath., I., Gruenewald, F.: Twistors and Killing Spinors on Riemannian Manifolds.B.G. Teubner, 1991.
Reference: [2] Bie, H. De, Somberg, P., Souček, V.: The Howe Duality and Polynomial Solutions for the Symplectic Dirac Operator.Archive http://arxiv.org/pdf/1002.1053v1.pdf.
Reference: [3] Britten, D. J., Lemire, F. W.: On modules of bounded multiplicities for the symplectic algebras.Trans. Amer. Math. Soc. 351 (1999), 3413–3431. Zbl 0930.17005, MR 1615943, 10.1090/S0002-9947-99-02338-7
Reference: [4] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures.Springer Netherlands, 2009. MR 1044769
Reference: [5] Dostálová, M., Somberg, P.: Symplectic twistor operator and its solution space on ${\mathbb{R}}^{2n}$.Complex Analysis and Operator Theory 4 (2013). MR 3144180
Reference: [6] Friedrich, T.: Dirac Operators in Riemannian Geometry.AMS, 2000. Zbl 0949.58032, MR 1777332
Reference: [7] Fulton, W., Harris, J.: Representation Theory: A First Course (Graduate Texts in Mathematics/Readings in Mathematics).Springer, 1991. MR 1153249
Reference: [8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators.Lecture Notes in Mathematics, 1887, Springer-Verlag, Berlin, 2006. Zbl 1102.53032, MR 2252919
Reference: [9] Kadlcakova, L.: Contact Symplectic Geometry in Parabolic Invariant Theory and Symplectic Dirac Operator.Dissertation Thesis, Mathematical Institute of Charles University, Prague, 2002. Zbl 1039.58017, MR 1890440
Reference: [10] Kostant, B.: Symplectic Spinors.Rome Symposia XIV (1974), 139–152. Zbl 0321.58015, MR 0400304
.

Files

Files Size Format View
ArchMathRetro_049-2013-3_2.pdf 599.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo