Previous |  Up |  Next

Article

Title: Control affine systems on solvable three-dimensional Lie groups, I (English)
Author: Biggs, Rory
Author: Remsing, Claudiu C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 3
Year: 2013
Pages: 187-197
Summary lang: English
.
Category: math
.
Summary: We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification. (English)
Keyword: left-invariant control system
Keyword: (detached) feedback equivalence
Keyword: affine subspace
Keyword: solvable Lie algebra
MSC: 17B30
MSC: 93A10
MSC: 93B27
idZBL: Zbl 06321157
idMR: MR3144181
DOI: 10.5817/AM2013-3-187
.
Date available: 2013-12-02T11:24:54Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143531
.
Reference: [1] Agrachev, A. A., Sachkov, Y. L.: Control Theory from the Geometric Viewpoint.Springer Verlag, 2004. Zbl 1062.93001, MR 2062547
Reference: [2] Biggs, R., Remsing, C. C.: On the equivalence of control systems on Lie groups.submitted.
Reference: [3] Biggs, R., Remsing, C. C.: A category of control systems.An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 355–368. Zbl 1274.93062, MR 2928428
Reference: [4] Biggs, R., Remsing, C. C.: A note on the affine subspaces of three–dimensional Lie algebras.Bul. Acad. Ştiinţe Repub. Mold. Mat. no. 3 (2012), 45–52. MR 3155842
Reference: [5] Biggs, R., Remsing, C. C.: Control affine systems on semisimple three–dimensional Lie groups.An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 59 (2) (2013), 399–414.
Reference: [6] Biggs, R., Remsing, C. C.: Control affine systems on solvable three–dimensional Lie groups, II.to appear in Note Mat. 33 (2013). Zbl 1287.93022, MR 3178571
Reference: [7] Ha, K. Y., Lee, J. B.: Left invariant metrics and curvatures on simply connected three–dimensional Lie groups.Math. Nachr. 282 (6) (2009), 868–898. Zbl 1172.22006, MR 2530885, 10.1002/mana.200610777
Reference: [8] Harvey, A.: Automorphisms of the Bianchi model Lie groups.J. Math. Phys. 20 (2) (1979), 251–253. MR 0519209, 10.1063/1.524073
Reference: [9] Jakubczyk, B.: Equivalence and Invariants of Nonlinear Control Systems.Nonlinear Controllability and Optimal Control (Sussmann, H. J., ed.), M. Dekker, 1990, pp. 177–218. Zbl 0712.93027, MR 1061386
Reference: [10] Jurdjevic, V.: Geometric Control Theory.Cambridge University Press, 1977. MR 1425878
Reference: [11] Jurdjevic, V., Sussmann, H. J.: Control systems on Lie groups.J. Differential Equations 12 (1972), 313–329. Zbl 0237.93027, MR 0331185, 10.1016/0022-0396(72)90035-6
Reference: [12] Knapp, A. W.: Lie Groups beyond an Introduction.Progress in Mathematics, Birkhäuser, second ed., 2004. MR 1399083
Reference: [13] Krasinski, A., et al., : The Bianchi classification in the Schücking–Behr approach.Gen. Relativity Gravitation 35 (3) (2003), 475–489. Zbl 1016.83004, MR 1964375, 10.1023/A:1022382202778
Reference: [14] MacCallum, M. A. H.: On the Classification of the Real Four–Dimensional Lie Algebras.On Einstein's Path: Essays in Honour of E. Schücking (Harvey, A., ed.), Springer Verlag, 1999, pp. 299–317. Zbl 0959.17003, MR 1658911
Reference: [15] Popovych, R. O., Boyco, V. M., Nesterenko, M. O., Lutfullin, M. W.: Realizations of real low–dimensional Lie algebras.J. Phys. A: Math. Gen. 36 (2003), 7337–7360. MR 2004893, 10.1088/0305-4470/36/26/309
Reference: [16] Remsing, C. C.: Optimal control and Hamilton–Poisson formalism.Int. J. Pure Appl. Math. 59 (1) (2001), 11–17. MR 2642777
.

Files

Files Size Format View
ArchMathRetro_049-2013-3_3.pdf 543.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo