| Title:
             | 
$k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons (English) | 
| Author:
             | 
Vencálek, Ondřej | 
| Language:
             | 
English | 
| Journal:
             | 
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica | 
| ISSN:
             | 
0231-9721 | 
| Volume:
             | 
52 | 
| Issue:
             | 
2 | 
| Year:
             | 
2013 | 
| Pages:
             | 
121-129 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In the present paper we investigate performance of the $k$-depth-nearest classifier. This classifier, proposed recently by Vencálek, uses the concept of data depth to improve the classification method known as the $k$-nearest neighbour. Simulation study which is presented here deals with the two-class classification problem in which the considered distributions belong to the family of skewed normal distributions. (English) | 
| Keyword:
             | 
data depth | 
| Keyword:
             | 
classification | 
| Keyword:
             | 
k-nearest neighbour | 
| Keyword:
             | 
skewed normal distribution | 
| MSC:
             | 
62G30 | 
| MSC:
             | 
62H30 | 
| idZBL:
             | 
Zbl 06296020 | 
| idMR:
             | 
MR3202385 | 
| . | 
| Date available:
             | 
2013-12-18T15:26:31Z | 
| Last updated:
             | 
2014-07-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143544 | 
| . | 
| Reference:
             | 
[1] Azzalini, A., Della Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 4 (1996), 715–726. MR 1440039, 10.1093/biomet/83.4.715 | 
| Reference:
             | 
[2] Azzalini, A. R: package sn: The skew-normal and skew-t distributions (version 0.4-6). http://azzalini.stat.unipd.it/SN, 2006. | 
| Reference:
             | 
[3] Hlubinka, D.: Výpravy do hlubin dat. In: Antoch, J., Dohnal, G. (eds.): Sborník prací 15. letní školy JČMF ROBUST 2008, JČMF, Praha, 2009, 97–130, (in czech). | 
| Reference:
             | 
[4] Hubert, M., van der Veeken, S.: Fast and robust classifiers adjusted for skewness. In: Lechevallier, Y., Saporta, G. (eds.): COMPSTAT 2010: proceedings in computational statistics: 19th symposium held in Paris, France Springer, Heidelberg, 2010, 1135–1142. | 
| Reference:
             | 
[5] Li, J., Cuesta-Albertos, J. A., Liu, R. Y.: DD-classifier: nonparametric classification procedure based on DD-plot. Journal of the American Statistical Association 104, 498 (2012), 737–753. Zbl 1261.62058, MR 2980081, 10.1080/01621459.2012.688462 | 
| Reference:
             | 
[6] Paindaveine, D., Van Bever, G.: Nonparametrically consistent depth-based classifiers. arXiv preprint arXiv:1204.2996, 2012. | 
| Reference:
             | 
[7] Vencálek, O.: Concept of Data Depth and Its Applications. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50, 2 (2011), 111–119. Zbl 1244.62048, MR 2920713 | 
| Reference:
             | 
[8] Vencálek, O.: Weighted data depth and depth based classification. PhD Thesis, MFF UK, Praha, 2011. | 
| Reference:
             | 
[9] Vencálek, O.: New depth-based modification of the $k$-nearest neighbour method. Informační bulletin České statistické společnosti, (2013), (to appear). | 
| Reference:
             | 
[10] Zuo, Y., Serfling, R.: General notion of statistical depth function. Annals of Statistics 28 (2000), 461–482. MR 1790005, 10.1214/aos/1016218226 | 
| . |