Previous |  Up |  Next

Article

Title: Derivations of homotopy algebras (English)
Author: Lada, Tom
Author: Tolley, Melissa
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 5
Year: 2013
Pages: 309-315
Summary lang: English
.
Category: math
.
Summary: We recall the definition of strong homotopy derivations of $A_\infty $ algebras and introduce the corresponding definition for $L_\infty $ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both. (English)
Keyword: $L_\infty $ algebra
Keyword: $A_\infty $ algebra
Keyword: strong homotopy derivation
MSC: 18G55
idZBL: Zbl 06383793
idMR: MR3159330
DOI: 10.5817/AM2013-5-309
.
Date available: 2014-01-16T11:20:09Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143555
.
Reference: [1] Allocca, M., Lada, T.: A finite dimensional $A_\infty $ algebra example.Georgian Math. J. 12 (10) (2010), 1–12. Zbl 1207.18014, MR 2640644
Reference: [2] Kajiura, H., Stasheff, J.: Homotopy algebras inspired by classical open–closed string field theory.Comm. Math. Phys. 263 (3) (2006), 553–581. Zbl 1125.18012, MR 2211816, 10.1007/s00220-006-1539-2
Reference: [3] Lada, T.: Commutators of $A_\infty $ structures.Contemporary Mathematics, 1999, pp. 227–233. Zbl 0940.16015
Reference: [4] Lada, T., Markl, M.: Strongly homotopy Lie algebras.Comm. Algebra 23 (6) (1995), 2147–2161. Zbl 0999.17019, 10.1080/00927879508825335
Reference: [5] Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists.Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. Zbl 0824.17024, 10.1007/BF00671791
Reference: [6] Stasheff, J.: Homotopy associativity of H-spaces II.Trans. Amer. Math. Soc. 108 (1963), 293–312.
Reference: [7] Tolley, M.: The connections between $A_\infty $ and $L_\infty $ algebras.Ph.D. thesis, NCSU, 2013.
.

Files

Files Size Format View
ArchMathRetro_049-2013-5_5.pdf 435.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo