Previous |  Up |  Next

Article

Title: The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$ (English)
Author: Milev, Todor
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 5
Year: 2013
Pages: 317-332
Summary lang: English
.
Category: math
.
Summary: The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm{Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm{Lie~}G_2}) \cap {\mathfrak{p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules. (English)
Keyword: generalized Verma modules
Keyword: conformal geometry in dimension $5$
Keyword: exceptional Lie algebra ${\mathrm{Lie~}G_2}$
Keyword: F-method
Keyword: branching problem
MSC: 13C10
MSC: 17B10
MSC: 22E47
idZBL: Zbl 06383794
idMR: MR3159331
DOI: 10.5817/AM2013-5-317
.
Date available: 2014-01-16T11:21:10Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143556
.
Reference: [1] Čap, A., Slovák, J.: Parabolic geometries, I: Background and General Theory.Mathematical Surveys and Monographs, American Mathematical Society, 2009. Zbl 1183.53002, MR 2532439
Reference: [2] Dixmier, J.: Algebres Enveloppantes.Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. Zbl 0308.17007
Reference: [3] Eastwood, M. G., Graham, C. R.: Invariants of conformal densities.Duke Math. J. 63 (1991), 633–671. Zbl 0745.53007, 10.1215/S0012-7094-91-06327-1
Reference: [4] Graham, R. C., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$.http://xxx.lanl.gov/abs/1109.3504. Zbl 1268.53075
Reference: [5] Humphreys, J. E., Jr., : Representations of Semisimple Lie Algebras in the BGG Category $ {\mathcal{O}}$.Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. MR 2428237
Reference: [6] Juhl, A.: Families of conformally covariant differential operators, Q–curvature and holography.Progress in Math., Birkhäuser, 2009. Zbl 1177.53001, MR 2521913
Reference: [7] Kobayashi, T.: Discrete decomposability of the restriction of $A_{\mathfrak{q}}( \lambda )$ with respect to reductive subgroups and its applications.Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. 10.1007/BF01232239
Reference: [8] Kobayashi, T.: Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs.Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. MR 2369496
Reference: [9] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs.Transform. Groups 17 (2012), 523–546. Zbl 1257.22014, MR 2921076, 10.1007/s00031-012-9180-y
Reference: [10] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, I.preprint.
Reference: [11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, II.preprint.
Reference: [12] Kostant, B.: Verma modules and the existence of quasi–invariant differential operators.Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129.
Reference: [13] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution.J. Algebra 49 (1977), 496–511. Zbl 0381.17006, 10.1016/0021-8693(77)90254-X
Reference: [14] Matumoto, H.: The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras.Duke Math. J. 131 (2006), 75–118. Zbl 1129.17008, MR 2219237, 10.1215/S0012-7094-05-13113-1
Reference: [15] Milev, T., Somberg, P.: The branching problem for generalized Verma modules, with application to the pair $(\operatorname{so}(7), \operatorname{Lie}\, G_2)$.http://xxx.lanl.gov/abs/1209.3970.
.

Files

Files Size Format View
ArchMathRetro_049-2013-5_6.pdf 588.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo