Title:
|
The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$ (English) |
Author:
|
Milev, Todor |
Author:
|
Somberg, Petr |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
49 |
Issue:
|
5 |
Year:
|
2013 |
Pages:
|
317-332 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm{Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm{Lie~}G_2}) \cap {\mathfrak{p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules. (English) |
Keyword:
|
generalized Verma modules |
Keyword:
|
conformal geometry in dimension $5$ |
Keyword:
|
exceptional Lie algebra ${\mathrm{Lie~}G_2}$ |
Keyword:
|
F-method |
Keyword:
|
branching problem |
MSC:
|
13C10 |
MSC:
|
17B10 |
MSC:
|
22E47 |
idZBL:
|
Zbl 06383794 |
idMR:
|
MR3159331 |
DOI:
|
10.5817/AM2013-5-317 |
. |
Date available:
|
2014-01-16T11:21:10Z |
Last updated:
|
2015-03-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143556 |
. |
Reference:
|
[1] Čap, A., Slovák, J.: Parabolic geometries, I: Background and General Theory.Mathematical Surveys and Monographs, American Mathematical Society, 2009. Zbl 1183.53002, MR 2532439 |
Reference:
|
[2] Dixmier, J.: Algebres Enveloppantes.Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. Zbl 0308.17007 |
Reference:
|
[3] Eastwood, M. G., Graham, C. R.: Invariants of conformal densities.Duke Math. J. 63 (1991), 633–671. Zbl 0745.53007, 10.1215/S0012-7094-91-06327-1 |
Reference:
|
[4] Graham, R. C., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$.http://xxx.lanl.gov/abs/1109.3504. Zbl 1268.53075 |
Reference:
|
[5] Humphreys, J. E., Jr., : Representations of Semisimple Lie Algebras in the BGG Category $ {\mathcal{O}}$.Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. MR 2428237 |
Reference:
|
[6] Juhl, A.: Families of conformally covariant differential operators, Q–curvature and holography.Progress in Math., Birkhäuser, 2009. Zbl 1177.53001, MR 2521913 |
Reference:
|
[7] Kobayashi, T.: Discrete decomposability of the restriction of $A_{\mathfrak{q}}( \lambda )$ with respect to reductive subgroups and its applications.Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. 10.1007/BF01232239 |
Reference:
|
[8] Kobayashi, T.: Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs.Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. MR 2369496 |
Reference:
|
[9] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs.Transform. Groups 17 (2012), 523–546. Zbl 1257.22014, MR 2921076, 10.1007/s00031-012-9180-y |
Reference:
|
[10] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, I.preprint. |
Reference:
|
[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, II.preprint. |
Reference:
|
[12] Kostant, B.: Verma modules and the existence of quasi–invariant differential operators.Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. |
Reference:
|
[13] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution.J. Algebra 49 (1977), 496–511. Zbl 0381.17006, 10.1016/0021-8693(77)90254-X |
Reference:
|
[14] Matumoto, H.: The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras.Duke Math. J. 131 (2006), 75–118. Zbl 1129.17008, MR 2219237, 10.1215/S0012-7094-05-13113-1 |
Reference:
|
[15] Milev, T., Somberg, P.: The branching problem for generalized Verma modules, with application to the pair $(\operatorname{so}(7), \operatorname{Lie}\, G_2)$.http://xxx.lanl.gov/abs/1209.3970. |
. |