Previous |  Up |  Next

Article

Title: Universally typical sets for ergodic sources of multidimensional data (English)
Author: Krüger, Tyll
Author: Montúfar, Guido
Author: Seiler, Ruedi
Author: Siegmund-Schultze, Rainer
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 6
Year: 2013
Pages: 868-882
Summary lang: English
.
Category: math
.
Summary: We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an $h_{0}$ with probability one and whose cardinality grows at most at exponential rate $h_{0}$. (English)
Keyword: universal codes
Keyword: typical sampling sets
Keyword: entropy estimation
Keyword: asymptotic equipartition property
Keyword: ergodic theory
MSC: 60F15
MSC: 62D05
MSC: 94A08
MSC: 94A17
MSC: 94A24
idZBL: Zbl 1293.94037
idMR: MR3182645
.
Date available: 2014-01-27T12:26:01Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143576
.
Reference: [1] Bjelaković, I., Krüger, T., Siegmund-Schultze, R., Szkoła, A.: The Shannon-McMillan theorem for ergodic quantum lattice systems..Invent. Math. 155 (2004) (1), 203-222. Zbl 1092.81043, MR 2025304, 10.1007/s00222-003-0318-3
Reference: [2] Breiman, L.: The individual ergodic theorem of information theory..Ann. Math. Statist. 28 (1957), 809-811. Zbl 0092.34001, MR 0092710, 10.1214/aoms/1177706899
Reference: [3] Kieffer, J. C.: A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space..Ann. Probab. 3 (1975), 6, 1031-1037. MR 0393422, 10.1214/aop/1176996230
Reference: [4] Lempel, A., Ziv, J.: Compression of two-dimensional data..IEEE Trans. Inform. Theory 32 (1986), 1, 2-8. 10.1109/TIT.1986.1057132
Reference: [5] Lindenstrauss, E.: Pointwise theorems for amenable groups..Invent. Math. 146 (2001), 2, 259-295. Zbl 1038.37004, MR 1865397, 10.1007/s002220100162
Reference: [6] McMillan, B.: The basic theorems of information theory..Ann. Math. Statist. 24 (1953), 2, 196-219. Zbl 0050.35501, MR 0055621, 10.1214/aoms/1177729028
Reference: [7] Ornstein, D. S., Weiss, B.: The Shannon-McMillan-Breiman theorem for a class of amenable groups..Israel J. Math. 44 (1983), 1, 53-60. Zbl 0516.28020, MR 0693654, 10.1007/BF02763171
Reference: [8] Ornstein, D. S., Weiss, B.: How sampling reveals a process..Ann. Probab. 18 (1990), 3, 905-930. Zbl 0709.60036, MR 1062052, 10.1214/aop/1176990729
Reference: [9] Shannon, C. E.: A mathematical theory of communication..Bell Syst. Techn. J. 27 (1948), 1, 379-423, 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [10] Schmidt, K.: A probabilistic proof of ergodic decomposition..Sankhya: Indian J. Statist, Ser. A 40 (1978), 1, 10-18. Zbl 0412.60004, MR 0545459
Reference: [11] Shields, P.: The Ergodic Theory of Discrete Sample Paths..Amer. Math. Soc., Graduate Stud. Math. 13 (1996). Zbl 0879.28031, MR 1400225, 10.1090/gsm/013
Reference: [12] Welch, T. A.: A technique for high-performance data compression..Computer 17 (1984), 6, 8-19. 10.1109/MC.1984.1659158
Reference: [13] Ziv, J., Lempel, A.: A universal algorithm for sequential data compression..IEEE Trans. Inform. Theory 23 (1977), 3, 337-343. Zbl 0379.94010, MR 0530215, 10.1109/TIT.1977.1055714
Reference: [14] Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding..IEEE Trans. Inform. Theory 24 (1978), 5, 530-536. Zbl 0392.94004, MR 0507465, 10.1109/TIT.1978.1055934
.

Files

Files Size Format View
Kybernetika_49-2013-6_3.pdf 420.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo