Previous |  Up |  Next

Article

Title: Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system (English)
Author: Liang, Hongtao
Author: Tang, Yanxia
Author: Li, Li
Author: Wei, Zhouchao
Author: Wang, Zhen
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 6
Year: 2013
Pages: 935-947
Summary lang: English
.
Category: math
.
Summary: In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system. (English)
Keyword: four-wing chaotic attractors
Keyword: Lyapunov coefficient
Keyword: degenerate Hopf bifurcations
Keyword: period-doubling cascade
MSC: 34A34
MSC: 34C05
MSC: 34C23
MSC: 34C28
MSC: 34H10
MSC: 34H20
idZBL: Zbl 1290.34050
idMR: MR3182649
.
Date available: 2014-01-27T12:32:23Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143580
.
Reference: [1] Chen, G. R., Ueta, T.: Yet another chaotic attractor..Internat. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl 0962.37013, MR 1729683, 10.1142/S0218127499001024
Reference: [2] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, Second edition..Springer-Verlag, New York 1998. MR 1711790
Reference: [3] Lorenz, E. N.: Deterministic non-periodic flow..J. Atmospheric Sci. 20 (1963), 130-141. 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Reference: [4] Lü, J. H., Chen, G. R.: A new chaotic attractor conined..Internat. J. Bifur. Chaos 12 (2002), 659-661. MR 1894886, 10.1142/S0218127402004620
Reference: [5] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system..Internat. J. Bifur. Chaos 14 (2004), 1507-1537. Zbl 1129.37323, MR 2072347, 10.1142/S021812740401014X
Reference: [6] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method..Automatica 40 (2004), 1677-1687. Zbl 1162.93353, MR 2155461, 10.1016/j.automatica.2004.06.001
Reference: [7] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors..IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. 10.1109/TCSI.2005.854412
Reference: [8] Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C.: Local bifurcations of the Chen system..Internat. J. Bifur. Chaos 12 (2002), 2257-2270. MR 1941281, 10.1142/S0218127402005819
Reference: [9] Mello, L. F., Coelho, S. F.: Degenerate Hopf bifurcations in the L$\ddot{u}$ system..Phys. Lett. A 373 (2009), 1116-1120. MR 2489562, 10.1016/j.physleta.2009.01.049
Reference: [10] Messias, M., Braga, D. C., Mello, L. F.: Degenerate Hopf bifurcaton in Chua's system..Internat. J. Bifur. Chaos 19 (2009), 497-515. MR 2510108, 10.1142/S0218127409023159
Reference: [11] Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system..Chaos Soliton Fract. 38 (2008), 705-721. Zbl 1146.37332, MR 2423359
Reference: [12] Rössler, O. E.: An equation for continuious chaos..Phys. Lett. A 57 (1976), 397-398. 10.1016/0375-9601(76)90101-8
Reference: [13] Shaw, R.: Strange attractor, chaotic behaviour and information flow..Z.Naturfosch. A 36 (1981), 80-112. MR 0604920
Reference: [14] Sotomayor, S., Mello, L. F., Braga, D. C.: Bifurcation analysis of the Watt governor system..Comm. Appl. Math. 26(2007), 19-44. Zbl 1182.70038, MR 2320256
Reference: [15] Sotomayor, S., Mello, L. F., Braga, D. C.: Lyapunov coefficients for degenerate Hopf bifurcations..arXiv:0709.3949v1 [math.DS], http://arxiv.org/.
Reference: [16] Sprott, J. C.: Some simple chaotic flows..Phys. Rev. E 50 (1994), 647-650. MR 1381868, 10.1103/PhysRevE.50.R647
Reference: [17] Sprott, J. C.: A new class of chaotic circuit..Phys. Lett. A 266 (2000), 19-23. 10.1016/S0375-9601(00)00026-8
Reference: [18] Sprott, J. C.: Simplest dissipative chaotic flow..Phys. Lett. A 228 (1997), 271-274. Zbl 1043.37504, MR 1442639, 10.1016/S0375-9601(97)00088-1
Reference: [19] Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J.: Bifurcation analysis of the Qi 3-D four-wing chaotic system..Acta Phys. Pol. B 41 (2010), 767-778.
Reference: [20] Schrier, G. van der, Maas, L. R. M.: The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map..Physica D 141 (2000), 19-36. MR 1764166
Reference: [21] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium..Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. MR 2843793, 10.1016/j.cnsns.2011.07.017
Reference: [22] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria..Nonlinear Anal. RWA 12 (2011), 106-118. Zbl 1213.37061, MR 2728666
Reference: [23] Wei, Z. C., Yang, Q. G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria..Nonlinear Dyn. 68 (2012), 543-554. Zbl 1252.93067, MR 2928053
Reference: [24] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria..Nonlinear Anal. RWA. 12 (2011), 106-118. Zbl 1213.37061, MR 2728666
Reference: [25] Wei, Z. C., Yang, Q. G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci..Appl. Math. Comput. 217 (2010), 422-429. Zbl 1200.65102, MR 2672602, 10.1016/j.amc.2010.05.035
Reference: [26] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system..Internat. J. Bifur. Chaos 17 (2007), 3929-3949. Zbl 1149.37308, MR 2384392, 10.1142/S0218127407019792
Reference: [27] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci..Internat. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl 1147.34306, MR 2427132, 10.1142/S0218127408021063
Reference: [28] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci..Internat. J. Bifur. Chaos 20 (2010), 1061-1083. MR 2660159, 10.1142/S0218127410026320
Reference: [29] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops..IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. MR 2924533, 10.1109/TCSI.2011.2180429
.

Files

Files Size Format View
Kybernetika_49-2013-6_7.pdf 1.849Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo