Title:
|
Control Systems on the Orthogonal Group SO(4) (English) |
Author:
|
Adams, Ross M. |
Author:
|
Biggs, Rory |
Author:
|
Remsing, Claudiu C. |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
21 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
107-128 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined. (English) |
Keyword:
|
left-invariant control system |
Keyword:
|
detached feedback equivalence |
Keyword:
|
orthogonal group |
MSC:
|
22E60 |
MSC:
|
93B05 |
MSC:
|
93B17 |
MSC:
|
93B27 |
idZBL:
|
Zbl 1287.93021 |
idMR:
|
MR3159284 |
. |
Date available:
|
2014-01-27T12:41:12Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143585 |
. |
Reference:
|
[1] Adams, R.M., Biggs, R., Remsing, C.C.: On the equivalence of control systems on the orthogonal group SO(4).Recent Researches in Automatic Control, Systems Science and Communications, 2012, 54-59, WSEAS Press. MR 2881500 |
Reference:
|
[2] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2).Control Cybernet., 41, 2012, 513-524. MR 3087026 |
Reference:
|
[3] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint.2004, Springer. Zbl 1062.93001, MR 2062547 |
Reference:
|
[4] Aron, A., Moş, I., Csaky, A., Puta, M.: An optimal control problem on the Lie group SO(4).Int. J. Geom. Methods Mod. Phys., 5, 2008, 319-327. Zbl 1159.49002, MR 2422030, 10.1142/S0219887808002795 |
Reference:
|
[5] Biggs, J.D., Holderbaum, W.: Singularities of optimal control problems on some six dimensional Lie groups.IEEE Trans. Automat. Control, 52, 2007, 1027-1038. MR 2329893, 10.1109/TAC.2007.899010 |
Reference:
|
[6] Biggs, R., Remsing, C.C.: A category of control systems.An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368. Zbl 1274.93062, MR 2928428 |
Reference:
|
[7] Biggs, R., Remsing, C.C.: A note on the affine subspaces of three-dimensional Lie algebras.Bul. Acad. Ştiinţe Repub. Mold. Mat., 3, 2012, 45-52. MR 3155842 |
Reference:
|
[8] Biggs, R., Remsing, C.C.: On the equivalence of cost-extended control systems on Lie groups.Recent Researches in Automatic Control, Systems Science and Communications, 2012, 60-65, WSEAS Press. |
Reference:
|
[9] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups.An. Ştiinţe. Univ. Al. I. Cuza Iaşi. Mat., 59, 2013, 399-414. |
Reference:
|
[10] Biggs, R., Remsing, C.C.: Cost-extended control systems on Lie groups.Mediterr. J. Math., To appear in Mediterr. J. Math. DOI: 10.1007/s00009-013-0355-0. |
Reference:
|
[11] Biggs, R., Remsing, C.C.: Equivalence of control systems on the pseudo-orthogonal group $SO(2,1)_0$.preprint. |
Reference:
|
[12] Biggs, R., Remsing, C.C.: On the equivalence of control systems on Lie groups.preprint. |
Reference:
|
[13] Birtea, P., Caşu, I., Raţiu, T.S., Turhan, M.: Stability of equilibria for the $\mathfrak{so}(4)$ free rigid body.J. Nonlinear Sci., 22, 2012, 187-212. MR 2912325, 10.1007/s00332-011-9113-2 |
Reference:
|
[14] Bogoyavlensky, O.I.: Integrable Euler equations on SO(4) and their physical applications.Commun. Math. Phys., 93, 1984, 417-436. MR 0745694, 10.1007/BF01258538 |
Reference:
|
[15] D'Alessandro, D.: The optimal control problem on SO(4) and its applications to quantum control.IEEE Trans. Automat. Control, 47, 2002, 87-92. MR 1879692, 10.1109/9.981724 |
Reference:
|
[16] Isidori, A.: Nonlinear Control Systems (Third Edition).1995, Springer. |
Reference:
|
[17] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems.Nonlinear Controllability and Optimal Control, 1990, 177-218, Marcel Dekker. Zbl 0712.93027, MR 1061386 |
Reference:
|
[18] Jovanović, B.: Non-holonomic geodesic flows on Lie groups and the integrable Suslov problem on SO(4).J. Phys. A: Math. Gen., 31, 1998, 1415-1422. Zbl 0945.70014, MR 1628570, 10.1088/0305-4470/31/5/011 |
Reference:
|
[19] Jurdjevic, V.: Geometric Control Theory.1997, Cambridge University Press. Zbl 0940.93005, MR 1425878 |
Reference:
|
[20] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups.J. Diff. Equations, 12, 1972, 313-329. Zbl 0237.93027, MR 0331185, 10.1016/0022-0396(72)90035-6 |
Reference:
|
[21] Knapp, A. W.: Lie Groups Beyond an Introduction (Second Edition).2005, Birkhäuser. MR 1920389 |
Reference:
|
[22] Komarov, I.V., Kuznetsov, V.B.: Kowalewski's top on the Lie algebras $\mathfrak{o} (4)$, $\mathfrak{e} (3)$ and $\mathfrak{o} (3,1)$.J. Phys. A: Math. Gen., 23, 1990, 841-846. MR 1048764, 10.1088/0305-4470/23/6/010 |
Reference:
|
[23] Linton, C., Holderbaum, W., Biggs, J.: Rigid body trajectories in different 6D spaces.ISRN Math. Phys., 2012. 10.5402/2012/467520 |
Reference:
|
[24] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems.1996, Springer. MR 1047663 |
Reference:
|
[25] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach.Chaos in Automatic Control, 2006, 137-262, CRC Press. Zbl 1203.93039, MR 2283271 |
Reference:
|
[26] Sachkov, Y.L.: Control theory on Lie groups.J. Math. Sci., 156, 2009, 381-439. Zbl 1211.93038, MR 2373391, 10.1007/s10958-008-9275-0 |
Reference:
|
[27] Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on $\mathfrak{so} (4)$ and $\mathfrak{so} (1,3)$.J. Phys. A: Math. Gen., 39, 2006, 1915-1926. MR 2209308, 10.1088/0305-4470/39/8/009 |
Reference:
|
[28] Sussmann, H.J.: Lie brackets, real analyticity and geometric control.Differential Geometric Control Theory, 1983, 1-116, Birkhäuser. Zbl 0545.93002, MR 0708500 |
. |