Previous |  Up |  Next

Article

Title: On some issues concerning polynomial cycles (English)
Author: Pezda, Tadeusz
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 2
Year: 2013
Pages: 129-135
Summary lang: English
.
Category: math
.
Summary: We consider two issues concerning polynomial cycles. Namely, for a discrete valuation domain $R$ of positive characteristic (for $N\ge 1$) or for any Dedekind domain $R$ of positive characteristic (but only for $N\ge 2$), we give a closed formula for a set ${\cal CYCL}(R,N)$ of all possible cycle-lengths for polynomial mappings in $R^N$. Then we give a new property of sets ${\cal CYCL}(R,1)$, which refutes a kind of conjecture posed by W. Narkiewicz. (English)
Keyword: polynomial cycles
Keyword: discrete valuation domains
Keyword: Dedekind rings
MSC: 11R09
MSC: 13F05
MSC: 37P35
idZBL: Zbl 06296533
idMR: MR3159285
.
Date available: 2014-01-27T12:41:41Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143586
.
Reference: [1] Narkiewicz, W.: Polynomial Mappings, Lecture Notes in Mathematics, vol. 1600.1995, Springer-Verlag, Berlin. MR 1367962
Reference: [2] Pezda, T.: Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals.Acta Arith., 108, 2, 2003, 127-146. Zbl 1020.11066, MR 1974518, 10.4064/aa108-2-4
Reference: [3] Pezda, T.: Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals, II.Monatsh. Math., 145, 2005, 321-331. Zbl 1197.37143, MR 2162350, 10.1007/s00605-004-0290-z
Reference: [4] Silverman, J.H.: The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, No. 241.2007, Springer-Verlag. MR 2316407, 10.1007/978-0-387-69904-2_5
Reference: [5] Zieve, M.: Cycles of Polynomial Mappings.PhD thesis, 1996, University of California at Berkeley. MR 2694837
.

Files

Files Size Format View
ActaOstrav_21-2013-2_3.pdf 413.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo