Previous |  Up |  Next

Article

Title: A Reproducing Kernel and Toeplitz Operators in the Quantum Plane (English)
Author: Sontz, Stephen Bruce
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 2
Year: 2013
Pages: 137-160
Summary lang: English
.
Category: math
.
Summary: We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined as Toeplitz operators. This paper extends results of the author for the finite dimensional case. (English)
Keyword: Reproducing kernel
Keyword: Toeplitz operator
Keyword: quantum plane
Keyword: second quantization
Keyword: creation and annihilation operators
MSC: 46E22
MSC: 47B32
MSC: 47B35
MSC: 81S99
idZBL: Zbl 06296534
idMR: MR3159286
.
Date available: 2014-01-27T12:42:23Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143587
.
Reference: [1] Aronszajn, N.: Theory of reproducing kernels.Trans. Am. Math. Soc., 108, 1950, 337-404. Zbl 0037.20701, MR 0051437, 10.1090/S0002-9947-1950-0051437-7
Reference: [2] Bargmann, V.: On a Hilbert space of analytic functions and its associated integral transform. I.Commun. Pure Appl. Math., 14, 1961, 187-214. MR 0157250, 10.1002/cpa.3160140303
Reference: [3] Baz, M. El, Fresneda, R., Gazeau, J-P., Hassouni, Y.: Coherent state quantization of paragrassmann algebras.J. Phys. A: Math. Theor., 43, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3. Zbl 1198.81124, MR 2718322
Reference: [4] Gazeau, J-P.: Coherent States in Quantum Physics.2009, Wiley-VCH.
Reference: [5] Kassel, C.: Quantum Groups.1995, Springer. Zbl 0808.17003, MR 1321145
Reference: [6] Khalkhali, M.: Basic Noncommutative Geometry.2009, European Math. Soc.. Zbl 1210.58006, MR 2567651
Reference: [7] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I, Functional Analysis.1972, Academic Press.
Reference: [8] Saitoh, S.: Theory of reproducing kernels and its applications, Pitman Research Notes, Vol. 189.1988, Longman Scientific & Technical, Essex. MR 0983117
Reference: [9] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels, Geometric Methods in Physics.XXXI Workshop 2012. Trends in Mathematics, 2013, 47-63, arXiv:1204.1033v3. MR 3159286
Reference: [10] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators.Journal of Operator Theory. To appear. arXiv:1205.5493.
.

Files

Files Size Format View
ActaOstrav_21-2013-2_4.pdf 463.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo