Previous |  Up |  Next

Article

Title: How to increase convergence order of the Newton method to $2\times m$? (English)
Author: Khattri, Sanjay Kumar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 15-24
Summary lang: English
.
Category: math
.
Summary: We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing. (English)
Keyword: iterative method
Keyword: fourth order convergent method
Keyword: eighth order convergent method
Keyword: quadrature
Keyword: Newton method
Keyword: convergence
Keyword: nonlinear equation
Keyword: optimal choice
MSC: 41A25
MSC: 65D99
MSC: 65H05
idZBL: Zbl 06346369
idMR: MR3164573
DOI: 10.1007/s10492-014-0038-6
.
Date available: 2014-01-28T13:53:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143595
.
Reference: [1] Argyros, I. K., Chen, D., Qian, Q.: The Jarratt method in Banach space setting.J. Comput. Appl. Math. 51 (1994), 103-106. Zbl 0809.65054, MR 1286420, 10.1016/0377-0427(94)90093-0
Reference: [2] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations.Numer. Math. 104 (2006), 297-315. Zbl 1126.65042, MR 2244355, 10.1007/s00211-006-0025-2
Reference: [3] Chun, C.: A geometric construction of iterative functions of order three to solve nonlinear equations.Comput. Math. Appl. 53 (2007), 972-976. Zbl 1141.65030, MR 2333340, 10.1016/j.camwa.2007.01.007
Reference: [4] Chun, C.: Some fourth-order iterative methods for solving nonlinear equations.Appl. Math. Comput. 195 (2008), 454-459. Zbl 1173.65031, MR 2381227, 10.1016/j.amc.2007.04.105
Reference: [5] Chun, C., Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods.Appl. Math. Comput. 193 (2007), 389-394. Zbl 1193.65055, MR 2385796, 10.1016/j.amc.2007.03.074
Reference: [6] Chun, C., Ham, Y.: Some fourth-order modifications of Newton's method.Appl. Math. Comput. 197 (2008), 654-658. Zbl 1137.65028, MR 2400687, 10.1016/j.amc.2007.08.003
Reference: [7] Chun, C., Ham, Y.: A one-parameter fourth-order family of iterative methods for nonlinear equations.Appl. Math. Comput. 189 (2007), 610-614. Zbl 1122.65330, MR 2330239, 10.1016/j.amc.2006.11.113
Reference: [8] Frontini, M., Sormani, E.: Some variant of Newton's method with third-order convergence.Appl. Math. Comput. 140 (2003), 419-426. Zbl 1037.65051, MR 1953913, 10.1016/S0096-3003(02)00238-2
Reference: [9] Homeier, H. H. H.: On Newton-type methods with cubic convergence.J. Comput. Appl. Math. 176 (2005), 425-432. Zbl 1063.65037, MR 2116403, 10.1016/j.cam.2004.07.027
Reference: [10] Khattri, S. K.: Optimal eighth order iterative methods.Math. Comput. Sci. 5 (2011), 237-243. Zbl 1256.65041, MR 2864067, 10.1007/s11786-011-0064-7
Reference: [11] Khattri, S. K.: Newton-Krylov algorithm with adaptive error correction for the Poisson-Boltzmann equation.MATCH Commun. Math. Comput. Chem. 56 (2006), 197-208. Zbl 1119.65334, MR 2312481
Reference: [12] Khattri, S. K.: Altered Jacobian Newton iterative method for nonlinear elliptic problems.IAENG, Int. J. Appl. Math. 38 (2008), 108-112. Zbl 1229.65199, MR 2442461
Reference: [13] Khattri, S. K.: Two optimal families of iterative methods for solving nonlinear equations.Analysis, München 31 (2011), 305-312. Zbl 1278.65061, MR 2877041, 10.1524/anly.2011.1098
Reference: [14] Khattri, S. K., Argyros, I. K.: Sixth order derivative free family of iterative methods.Appl. Math. Comput. 217 (2011), 5500-5507. Zbl 1229.65080, MR 2770167, 10.1016/j.amc.2010.12.021
Reference: [15] Khattri, S. K., Log, T.: Derivative free algorithm for solving nonlinear equations.Computing 92 (2011), 169-179. Zbl 1232.65073, MR 2794922, 10.1007/s00607-010-0135-7
Reference: [16] Khattri, S. K., Log, T.: Constructing third-order derivative-free iterative methods.Int. J. Comput. Math. 88 (2011), 1509-1518. Zbl 1214.65023, MR 2787907, 10.1080/00207160.2010.520705
Reference: [17] Khattri, S. K., Noor, M. A., Al-Said, E.: Unifying fourth-order family of iterative methods.Appl. Math. Lett. 24 (2011), 1295-1300. Zbl 1225.65053, MR 2793620, 10.1016/j.aml.2011.02.009
Reference: [18] King, R. F.: A family of fourth-order methods for nonlinear equations.SIAM J. Numer. Anal. 10 (1973), 876-879. Zbl 0266.65040, MR 0343585, 10.1137/0710072
Reference: [19] Kou, J., Li, Y., Wang, X.: A modification of Newton method with third-order convergence.Appl. Math. Comput. 181 (2006), 1106-1111. Zbl 1172.65021, MR 2269989, 10.1016/j.amc.2006.01.076
Reference: [20] Kou, J., Li, Y., Wang, X.: Fourth-order iterative methods free from second derivative.Appl. Math. Comput. 184 (2007), 880-885. Zbl 1114.65046, MR 2294954, 10.1016/j.amc.2006.05.189
Reference: [21] Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method for solving nonlinear equations.Appl. Math. Comput. 184 (2007), 471-475. Zbl 1114.65045, MR 2294862, 10.1016/j.amc.2006.05.181
Reference: [22] Ostrowski, A. M.: Solution of Equations and Systems of Equation. Pure and Applied Mathematics 9.Academic Press New York (1960). MR 0127525
Reference: [23] "{O}zban, A. Y.: Some new variants of Newton's method.Appl. Math. Lett. 17 (2004), 677-682. MR 2064180, 10.1016/S0893-9659(04)90104-8
Reference: [24] Potra, F.-A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103.Pitman Advanced Publishing Program Boston (1984). MR 0754338
Reference: [25] Ren, H., Wu, Q., Bi, W.: New variants of Jarratt's method with sixth-order convergence.Numer. Algorithms 52 (2009), 585-603. Zbl 1187.65052, MR 2563716, 10.1007/s11075-009-9302-3
Reference: [26] Sen, S. K., Agarwal, R. P., Khattri, S. K.: Computational pitfalls of high-order methods for nonlinear equations.J. Appl. Math. Inform. 30 (2012), 395-411. Zbl 1244.65069, MR 2977086
Reference: [27] Sharma, J. R., Goyal, R. K.: Fourth-order derivative-free methods for solving non-linear equations.Int. J. Comput. Math. 83 (2006), 101-106. Zbl 1094.65048, MR 2196090, 10.1080/00207160500113306
Reference: [28] Sharma, J. R., Guha, R. K.: A family of modified Ostrowski methods with accelerated sixth order convergence.Appl. Math. Comput. 190 (2007), 111-115. Zbl 1126.65046, MR 2335433, 10.1016/j.amc.2007.01.009
Reference: [29] Soleymani, F., Khattri, S. K., Vanani, S. K.: Two new classes of optimal Jarratt-type fourth-order methods.Appl. Math. Lett. 25 (2012), 847-853. Zbl 1239.65030, MR 2888084, 10.1016/j.aml.2011.10.030
Reference: [30] Traub, J. F.: Iterative Methods for the Solution of Equations. 2nd ed.Chelsea Publishing Company New York (1982). Zbl 0472.65040
Reference: [31] Weerakoon, S., Fernando, T. G. I.: A variant of Newton's method with accelerated third-order convergence.Appl. Math. Lett. 13 (2000), 87-93. Zbl 0973.65037, MR 1791767, 10.1016/S0893-9659(00)00100-2
Reference: [32] : ARPREC. C++/Fortran-90 arbitrary precision package. Available at http://crd.lbl.gov/dhbailey/mpdist/..
.

Files

Files Size Format View
AplMat_59-2014-1_2.pdf 235.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo