Title:
|
How to increase convergence order of the Newton method to $2\times m$? (English) |
Author:
|
Khattri, Sanjay Kumar |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
15-24 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing. (English) |
Keyword:
|
iterative method |
Keyword:
|
fourth order convergent method |
Keyword:
|
eighth order convergent method |
Keyword:
|
quadrature |
Keyword:
|
Newton method |
Keyword:
|
convergence |
Keyword:
|
nonlinear equation |
Keyword:
|
optimal choice |
MSC:
|
41A25 |
MSC:
|
65D99 |
MSC:
|
65H05 |
idZBL:
|
Zbl 06346369 |
idMR:
|
MR3164573 |
DOI:
|
10.1007/s10492-014-0038-6 |
. |
Date available:
|
2014-01-28T13:53:22Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143595 |
. |
Reference:
|
[1] Argyros, I. K., Chen, D., Qian, Q.: The Jarratt method in Banach space setting.J. Comput. Appl. Math. 51 (1994), 103-106. Zbl 0809.65054, MR 1286420, 10.1016/0377-0427(94)90093-0 |
Reference:
|
[2] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations.Numer. Math. 104 (2006), 297-315. Zbl 1126.65042, MR 2244355, 10.1007/s00211-006-0025-2 |
Reference:
|
[3] Chun, C.: A geometric construction of iterative functions of order three to solve nonlinear equations.Comput. Math. Appl. 53 (2007), 972-976. Zbl 1141.65030, MR 2333340, 10.1016/j.camwa.2007.01.007 |
Reference:
|
[4] Chun, C.: Some fourth-order iterative methods for solving nonlinear equations.Appl. Math. Comput. 195 (2008), 454-459. Zbl 1173.65031, MR 2381227, 10.1016/j.amc.2007.04.105 |
Reference:
|
[5] Chun, C., Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods.Appl. Math. Comput. 193 (2007), 389-394. Zbl 1193.65055, MR 2385796, 10.1016/j.amc.2007.03.074 |
Reference:
|
[6] Chun, C., Ham, Y.: Some fourth-order modifications of Newton's method.Appl. Math. Comput. 197 (2008), 654-658. Zbl 1137.65028, MR 2400687, 10.1016/j.amc.2007.08.003 |
Reference:
|
[7] Chun, C., Ham, Y.: A one-parameter fourth-order family of iterative methods for nonlinear equations.Appl. Math. Comput. 189 (2007), 610-614. Zbl 1122.65330, MR 2330239, 10.1016/j.amc.2006.11.113 |
Reference:
|
[8] Frontini, M., Sormani, E.: Some variant of Newton's method with third-order convergence.Appl. Math. Comput. 140 (2003), 419-426. Zbl 1037.65051, MR 1953913, 10.1016/S0096-3003(02)00238-2 |
Reference:
|
[9] Homeier, H. H. H.: On Newton-type methods with cubic convergence.J. Comput. Appl. Math. 176 (2005), 425-432. Zbl 1063.65037, MR 2116403, 10.1016/j.cam.2004.07.027 |
Reference:
|
[10] Khattri, S. K.: Optimal eighth order iterative methods.Math. Comput. Sci. 5 (2011), 237-243. Zbl 1256.65041, MR 2864067, 10.1007/s11786-011-0064-7 |
Reference:
|
[11] Khattri, S. K.: Newton-Krylov algorithm with adaptive error correction for the Poisson-Boltzmann equation.MATCH Commun. Math. Comput. Chem. 56 (2006), 197-208. Zbl 1119.65334, MR 2312481 |
Reference:
|
[12] Khattri, S. K.: Altered Jacobian Newton iterative method for nonlinear elliptic problems.IAENG, Int. J. Appl. Math. 38 (2008), 108-112. Zbl 1229.65199, MR 2442461 |
Reference:
|
[13] Khattri, S. K.: Two optimal families of iterative methods for solving nonlinear equations.Analysis, München 31 (2011), 305-312. Zbl 1278.65061, MR 2877041, 10.1524/anly.2011.1098 |
Reference:
|
[14] Khattri, S. K., Argyros, I. K.: Sixth order derivative free family of iterative methods.Appl. Math. Comput. 217 (2011), 5500-5507. Zbl 1229.65080, MR 2770167, 10.1016/j.amc.2010.12.021 |
Reference:
|
[15] Khattri, S. K., Log, T.: Derivative free algorithm for solving nonlinear equations.Computing 92 (2011), 169-179. Zbl 1232.65073, MR 2794922, 10.1007/s00607-010-0135-7 |
Reference:
|
[16] Khattri, S. K., Log, T.: Constructing third-order derivative-free iterative methods.Int. J. Comput. Math. 88 (2011), 1509-1518. Zbl 1214.65023, MR 2787907, 10.1080/00207160.2010.520705 |
Reference:
|
[17] Khattri, S. K., Noor, M. A., Al-Said, E.: Unifying fourth-order family of iterative methods.Appl. Math. Lett. 24 (2011), 1295-1300. Zbl 1225.65053, MR 2793620, 10.1016/j.aml.2011.02.009 |
Reference:
|
[18] King, R. F.: A family of fourth-order methods for nonlinear equations.SIAM J. Numer. Anal. 10 (1973), 876-879. Zbl 0266.65040, MR 0343585, 10.1137/0710072 |
Reference:
|
[19] Kou, J., Li, Y., Wang, X.: A modification of Newton method with third-order convergence.Appl. Math. Comput. 181 (2006), 1106-1111. Zbl 1172.65021, MR 2269989, 10.1016/j.amc.2006.01.076 |
Reference:
|
[20] Kou, J., Li, Y., Wang, X.: Fourth-order iterative methods free from second derivative.Appl. Math. Comput. 184 (2007), 880-885. Zbl 1114.65046, MR 2294954, 10.1016/j.amc.2006.05.189 |
Reference:
|
[21] Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method for solving nonlinear equations.Appl. Math. Comput. 184 (2007), 471-475. Zbl 1114.65045, MR 2294862, 10.1016/j.amc.2006.05.181 |
Reference:
|
[22] Ostrowski, A. M.: Solution of Equations and Systems of Equation. Pure and Applied Mathematics 9.Academic Press New York (1960). MR 0127525 |
Reference:
|
[23] "{O}zban, A. Y.: Some new variants of Newton's method.Appl. Math. Lett. 17 (2004), 677-682. MR 2064180, 10.1016/S0893-9659(04)90104-8 |
Reference:
|
[24] Potra, F.-A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103.Pitman Advanced Publishing Program Boston (1984). MR 0754338 |
Reference:
|
[25] Ren, H., Wu, Q., Bi, W.: New variants of Jarratt's method with sixth-order convergence.Numer. Algorithms 52 (2009), 585-603. Zbl 1187.65052, MR 2563716, 10.1007/s11075-009-9302-3 |
Reference:
|
[26] Sen, S. K., Agarwal, R. P., Khattri, S. K.: Computational pitfalls of high-order methods for nonlinear equations.J. Appl. Math. Inform. 30 (2012), 395-411. Zbl 1244.65069, MR 2977086 |
Reference:
|
[27] Sharma, J. R., Goyal, R. K.: Fourth-order derivative-free methods for solving non-linear equations.Int. J. Comput. Math. 83 (2006), 101-106. Zbl 1094.65048, MR 2196090, 10.1080/00207160500113306 |
Reference:
|
[28] Sharma, J. R., Guha, R. K.: A family of modified Ostrowski methods with accelerated sixth order convergence.Appl. Math. Comput. 190 (2007), 111-115. Zbl 1126.65046, MR 2335433, 10.1016/j.amc.2007.01.009 |
Reference:
|
[29] Soleymani, F., Khattri, S. K., Vanani, S. K.: Two new classes of optimal Jarratt-type fourth-order methods.Appl. Math. Lett. 25 (2012), 847-853. Zbl 1239.65030, MR 2888084, 10.1016/j.aml.2011.10.030 |
Reference:
|
[30] Traub, J. F.: Iterative Methods for the Solution of Equations. 2nd ed.Chelsea Publishing Company New York (1982). Zbl 0472.65040 |
Reference:
|
[31] Weerakoon, S., Fernando, T. G. I.: A variant of Newton's method with accelerated third-order convergence.Appl. Math. Lett. 13 (2000), 87-93. Zbl 0973.65037, MR 1791767, 10.1016/S0893-9659(00)00100-2 |
Reference:
|
[32] : ARPREC. C++/Fortran-90 arbitrary precision package. Available at http://crd.lbl.gov/dhbailey/mpdist/.. |
. |