Title:
|
Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations (English) |
Author:
|
Stammberger, Markus |
Author:
|
Voss, Heinrich |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
1-13 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type. (English) |
Keyword:
|
eigenvalue problem |
Keyword:
|
fluid-solid vibration |
Keyword:
|
variational characterization |
Keyword:
|
minmax principle |
Keyword:
|
maxmin principle |
MSC:
|
35P05 |
MSC:
|
35Q35 |
MSC:
|
47A75 |
MSC:
|
49R05 |
MSC:
|
65N25 |
MSC:
|
74F10 |
MSC:
|
74H45 |
MSC:
|
76Q05 |
idZBL:
|
Zbl 06346368 |
idMR:
|
MR3164572 |
DOI:
|
10.1007/s10492-014-0037-7 |
. |
Date available:
|
2014-01-28T13:51:23Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143592 |
. |
Reference:
|
[1] Alonso, A., Russo, A. D., Padra, C., Rodríguez, R.: A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems.Adv. Comput. Math. 15 (2001), 25-59. Zbl 1043.74041, MR 1887728, 10.1023/A:1014243118190 |
Reference:
|
[2] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) P. Ciarlet et al. North-Holland Amsterdam (1991), 641-787. MR 1115240 |
Reference:
|
[3] Belytschko, T.: Fluid-structure interaction.Comput. Struct. 12 (1980), 459-469. Zbl 0457.73076, 10.1016/0045-7949(80)90121-2 |
Reference:
|
[4] Bennighof, J. K.: Vibroacoustic frequency sweep analysis using automated multi-level substructuring.Proceedings of the AIAA 40$^ th$ SDM Conference, St. Louis, Missouri, 1999 Department of Aerospace Engineering & Engineering Mechanics, The University of Texas Austin (1999). |
Reference:
|
[5] Bermúdez, A., Gamallo, P., Noguieras, M. R., Rodríguez, R.: Approximation of a structural acoustic vibration problem by hexahedral finite elements.IMA J. Numer. Anal. 26 (2006), 391-421. MR 2218639, 10.1093/imanum/dri032 |
Reference:
|
[6] Bermúdez, A., Rodríguez, R.: Analysis of a finite element method for pressure/potential formulation of elastoacoustic spectral problems.Math. Comput. 71 (2002), 537-552. Zbl 0992.74066, MR 1885614, 10.1090/S0025-5718-01-01335-7 |
Reference:
|
[7] Craggs, A.: The transient response of a coupled plate-acoustic system using plate and acoustic finite elements.Journal of Sound and Vibration 15 (1971), 509-528. 10.1016/0022-460X(71)90408-1 |
Reference:
|
[8] Deü, J.-F., Larbi, W., Ohayon, R.: Variational formulation of interior structural-acoustic vibration problem.Computational Aspects of Structural Acoustics and Vibrations G. Sandberg et al. CISM International Centre for Mechanical Sciences 505 Springer, Wien (2009), 1-21. |
Reference:
|
[9] Everstine, G. C.: A symmetric potential formulation for fluid-structure interaction.Journal of Sound and Vibration 79 (1981), 157-160. 10.1016/0022-460X(81)90335-7 |
Reference:
|
[10] Morand, H., Ohayon, R.: Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results.Int. J. Numer. Methods Eng. 14 (1979), 741-755. Zbl 0402.73052, 10.1002/nme.1620140508 |
Reference:
|
[11] Olson, L. G., Bathe, K.-J.: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential.Comput. Struct. 21 (1985), 21-32. Zbl 0568.73088, 10.1016/0045-7949(85)90226-3 |
Reference:
|
[12] Petyt, M., Lea, J., Koopmann, G. H.: A finite element method for determining the acoustic modes of irregular shaped cavities.Journal of Sound and Vibration 45 (1976), 495-502. 10.1016/0022-460X(76)90730-6 |
Reference:
|
[13] Rodríguez, R., Solomin, J. E.: The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems.Math. Comput. 65 (1996), 1463-1475. Zbl 0853.65111, MR 1344621, 10.1090/S0025-5718-96-00739-9 |
Reference:
|
[14] Sandberg, G., Göransson, P.: A symmetric finite element formulation for acoustic fluid-structure interaction analysis.Journal of Sound and Vibration 123 (1988), 507-515. 10.1016/S0022-460X(88)80166-4 |
Reference:
|
[15] Stammberger, M.: On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. PhD thesis.Institute of Numerical Simulation, Hamburg University of Technology Hamburg (2010). |
Reference:
|
[16] Stammberger, M., Voss, H.: Automated multi-level sub-structuring for fluid-solid interaction problems.Numer. Linear Algebra Appl. 18 (2011), 411-427. Zbl 1249.65271, MR 2760061, 10.1002/nla.734 |
Reference:
|
[17] Stammberger, M., Voss, H.: On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures.ETNA, Electron. Trans. Numer. Anal. (electronic only) 36 (2009-2010), 113-125. Zbl 1237.74028, MR 2780001 |
Reference:
|
[18] Voss, H., Stammberger, M.: Structural-acoustic vibration problems in the presence of strong coupling.J. Pressure Vessel Technol. 135 (2013), paper 011303. 10.1115/1.4007251 |
. |