Previous |  Up |  Next

Article

Title: A new simultaneous subgradient projection algorithm for solving a multiple-sets split feasibility problem (English)
Author: Dang, Yazheng
Author: Gao, Yan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 37-51
Summary lang: English
.
Category: math
.
Summary: In this paper, we present a simultaneous subgradient algorithm for solving the multiple-sets split feasibility problem. The algorithm employs two extrapolated factors in each iteration, which not only improves feasibility by eliminating the need to compute the Lipschitz constant, but also enhances flexibility due to applying variable step size. The convergence of the algorithm is proved under suitable conditions. Numerical results illustrate that the new algorithm has better convergence than the existing one. (English)
Keyword: multiple-sets split feasibility problem
Keyword: subgradient
Keyword: extrapolated technique
MSC: 47J25
MSC: 90C25
MSC: 90C30
MSC: 90C33
idZBL: Zbl 06346371
idMR: MR3164575
DOI: 10.1007/s10492-014-0040-z
.
Date available: 2014-01-28T13:55:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143597
.
Reference: [1] Bauschke, H. H., Borwein, J. M.: On projection algorithms for solving convex feasibility problems.SIAM Rev. 38 (1996), 367-426. Zbl 0865.47039, MR 1409591, 10.1137/S0036144593251710
Reference: [2] Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem.Inverse Probl. 18 (2002), 441-453. Zbl 0996.65048, MR 1910248
Reference: [3] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy.Physics in Medicine and Biology 51 (2006), 2353-2365.
Reference: [4] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (1994), 221-239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692
Reference: [5] Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems.Inverse Probl. 21 (2005), 2071-2084. Zbl 1089.65046, MR 2183668
Reference: [6] Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem.J. Math. Anal. Appl. 327 (2007), 1244-1256. Zbl 1253.90211, MR 2280001, 10.1016/j.jmaa.2006.05.010
Reference: [7] Censor, Y., Segal, A.: Sparse string-averaging and split common fixed points.Nonlinear Analysis and Optimization I. Nonlinear Analysis. A conference in celebration of Alex Ioffe's 70th and Simeon Reich's 60th birthdays, Haifa, Israel, June 18-24, 2008 A. Leizarowitz et al. Contemporary Mathematics 513 American Mathematical Society, Providence (2010), 125-142. Zbl 1229.47107, MR 2668242
Reference: [8] Censor, Y., Segal, A.: The split common fixed point problem for directed operators.J. Convex Anal. 16 (2009), 587-600. Zbl 1189.65111, MR 2559961
Reference: [9] Combettes, P. L.: Convex set theoretic image reconvery by extrapolated iterations of parallel subgradient projections.IEEE Transactions on Image Processing 6 (1997), 493-506. 10.1109/83.563316
Reference: [10] Dang, Y., Gao, Y.: Non-monotonous accelerated parallel subgradient projection algorithm for convex feasibility problem.Optimization (electronic only) (2012). MR 3195995
Reference: [11] Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem.Inverse Probl. 27 (2011), Article ID 015007. Zbl 1211.65065, MR 2746410
Reference: [12] Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space.J. Nonlinear Convex Anal. 8 (2007), 367-371. Zbl 1171.90009, MR 2377859
Reference: [13] Pierra, G.: Decomposition through formalization in a product space.Math. Program. 28 (1984), 96-115. Zbl 0523.49022, MR 0727421, 10.1007/BF02612715
Reference: [14] Pierra, G.: Parallel constraint decomposition for minimization of a quadratic form.Optimization Techniques. Modeling and Optimization in the Service of Man Part 2. Proceedings, 7th IFIP conference, Nice, September 8-12, 1975 J. Cea Lecture Notes in Computer Science 41 Springer, Berlin (1976), 200-218 French.
Reference: [15] Xu, H.-K.: A variable Krasnosel'skiĭ-Mann algorithm and the multiple-set split feasibility problem.Inverse Probl. 22 (2006), 2021-2034. Zbl 1126.47057, MR 2277527
Reference: [16] Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem.Inverse Probl. 20 (2004), 1261-1266. Zbl 1066.65047, MR 2087989
.

Files

Files Size Format View
AplMat_59-2014-1_4.pdf 284.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo