Previous |  Up |  Next

Article

Title: Time asymptotic description of an abstract Cauchy problem solution and application to transport equation (English)
Author: Abdelmoumen, Boulbeba
Author: Jedidi, Omar
Author: Jeribi, Aref
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 53-67
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in $L_1$-space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199. (English)
Keyword: evolution equation
Keyword: semi-group
Keyword: transport equation
Keyword: perturbed semigroups
Keyword: spectral theory
MSC: 20M10
MSC: 35B40
MSC: 35F10
MSC: 35R20
MSC: 47D06
MSC: 82D75
idZBL: Zbl 06346372
idMR: MR3164576
DOI: 10.1007/s10492-014-0041-y
.
Date available: 2014-01-28T13:56:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143598
.
Reference: [1] Abdelmoumen, B., Jeribi, A., Mnif, M.: Time asymptotic description of the solution to an abstract Cauchy problem and application to transport equation.Math. Z. 268 (2011), 837-869. Zbl 1231.47010, MR 2818733, 10.1007/s00209-010-0698-1
Reference: [2] Amar, A. Ben, Jeribi, A., Mnif, M.: Some applications of the regularity and irreducibility on transport theory.Acta Appl. Math. 110 (2010), 431-448. MR 2601665, 10.1007/s10440-009-9430-8
Reference: [3] Boulanouar, M.: A Rotenberg's model with perfect memory rule.C. R. Acad. Sci., Paris, Sér. I, Math. 327 (1998), 965-968 French. Zbl 0914.92014, MR 1659158
Reference: [4] Dunford, N., Pettis, B. J.: Linear operations on summable functions.Trans. Am. Math. Soc. 47 (1940), 323-392. Zbl 0023.32902, MR 0002020, 10.1090/S0002-9947-1940-0002020-4
Reference: [5] Dunford, N., Schwartz, J. T.: Linear Operators I. General Theory.Pure and Applied Mathematics 6 Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523
Reference: [6] Greenberg, W., Mee, C. van der, Protopopescu, V.: Boundary Value Problems in Abstract Kinetic Theory.Operator Theory: Advances and Applications 23 Birkhäuser, Basel (1987). MR 0896904
Reference: [7] Hille, E., Phillips, R. S.: Functional Analysis and Semi-Groups. rev. ed.Colloquium Publications 31 American Mathematical Society, Providence (1957); Functional Analysis and Semi-Groups. 3rd printing of rev. ed. of 1957 Colloquium Publications 31 American Mathematical Society, Providence (1974). MR 0089373
Reference: [8] Jeribi, A.: A characterization of the essential spectrum and applications.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 8 (2002), 805-825. Zbl 1099.47501, MR 1934382
Reference: [9] Jeribi, A.: Time asymptotic behaviour for unbounded linear operators arising in growing cell populations.Nonlinear Anal., Real World Appl. 4 (2003), 667-688. Zbl 1039.92033, MR 1978556
Reference: [10] Kato, T.: Perturbation Theory for Linear Operators. 2nd ed.Grundlehren der mathematischen Wissenschaften 132 Springer, Berlin (1976). Zbl 0342.47009, MR 0407617
Reference: [11] Lods, B.: On linear kinetic equations involving unbounded cross-sections.Math. Methods Appl. Sci. 27 (2004), 1049-1075. Zbl 1072.37062, MR 2063095, 10.1002/mma.485
Reference: [12] Mokhtar-Kharroubi, M.: Time asymptotic behaviour and compactness in transport theory.European J. Mech. B Fluids 11 (1992), 39-68. MR 1151539
Reference: [13] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44 Springer, New York (1983). Zbl 0516.47023, MR 0710486
Reference: [14] Rotenberg, M.: Transport theory for growing cell populations.J. Theor. Biol. 103 (1983), 181-199. MR 0713945, 10.1016/0022-5193(83)90024-3
Reference: [15] Smul'yan, Y. L.: Completely continuous perturbations of operators.Dokl. Akad. Nauk SSSR (N.S.) 101 (1955), 35-38 Russian; Completely continuous perturbations of operators. Translat. by M. G. Arsove Am. Math. Soc., Transl., II. Ser. 10 (1958), 341-344. Zbl 0080.10603
Reference: [16] Vidav, I.: Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator.J. Math. Anal. Appl. 22 (1968), 144-155. Zbl 0155.19203, MR 0230531, 10.1016/0022-247X(68)90166-2
.

Files

Files Size Format View
AplMat_59-2014-1_5.pdf 281.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo