Previous |  Up |  Next

Article

Title: Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces (English)
Author: Chen, Pengyu
Author: Li, Yongxiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 99-120
Summary lang: English
.
Category: math
.
Summary: In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$ $$ \begin{cases} u'(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\neq t_k, \Delta u |_{t=t_k}=u(t_k^+)-u(t_k^-)=I_k(u(t_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x_0, \end{cases} $$ where $A\colon D(A)\subset E\to E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$ $(t\geq 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0<t_1<t_2<\nobreak \dots <t_m<\nobreak a$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered. (English)
Keyword: evolution equation
Keyword: impulsive integro-differential equation
Keyword: nonlocal condition
Keyword: lower and upper solutions
Keyword: monotone iterative technique
Keyword: mild solution
MSC: 34K07
MSC: 34K30
MSC: 34K45
MSC: 47D06
MSC: 47J25
idZBL: Zbl 06346375
idMR: MR3164579
DOI: 10.1007/s10492-014-0044-8
.
Date available: 2014-01-28T14:00:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143601
.
Reference: [1] Ahmed, N. U.: Impulsive evolution equations in infinite dimensional spaces.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 11-24. Zbl 1023.49025, MR 1974227
Reference: [2] Ahmed, N. U.: Optimal feedback control for impulsive systems on the space of finitely additive measures.Publ. Math. 70 (2007), 371-393. Zbl 1164.34026, MR 2310657
Reference: [3] Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics 60 Marcel Dekker, New York (1980). Zbl 0441.47056, MR 0591679
Reference: [4] Banasiak, J., Arlotti, L.: Perturbations of Positive Semigroups with Applications.Springer Monographs in Mathematics Springer, London (2006). Zbl 1097.47038, MR 2178970
Reference: [5] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions.Contemporary Mathematics and Its Applications 2 Hindawi Publishing Corporation, New York (2006). Zbl 1130.34003, MR 2322133
Reference: [6] Benchohra, M., Ntouyas, S. K.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces.J. Math. Anal. Appl. 258 (2001), 573-590. Zbl 0982.45008, MR 1835560, 10.1006/jmaa.2000.7394
Reference: [7] Byszewski, L.: Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems.Dyn. Syst. Appl. 5 (1996), 595-605. Zbl 0869.47034, MR 1424567
Reference: [8] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U
Reference: [9] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space.Appl. Anal. 40 (1991), 11-19. Zbl 0694.34001, MR 1121321, 10.1080/00036819008839989
Reference: [10] Chang, Y.-K., Anguraj, A., Arjunan, M. M.: Existence results for impulsive neutral functional differential equations with infinite delay.Nonlinear Anal., Hybrid Syst. 2 (2008), 209-218. Zbl 1170.35467, MR 2382006
Reference: [11] Chang, Y.-K., Anguraj, A., Karthikeyan, K.: Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4377-4386. Zbl 1178.34071, MR 2548667, 10.1016/j.na.2009.02.121
Reference: [12] Deimling, K.: Nonlinear Functional Analysis.Springer Berlin (1985). Zbl 0559.47040, MR 0787404
Reference: [13] Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions.J. Math. Anal. Appl. 179 (1993), 630-637. Zbl 0798.35076, MR 1249842, 10.1006/jmaa.1993.1373
Reference: [14] Du, Y.: Fixed points of increasing operators in ordered Banach spaces and applications.Appl. Anal. 38 (1990), 1-20. Zbl 0671.47054, MR 1116172, 10.1080/00036819008839957
Reference: [15] Du, S. W., Lakshmikantham, V.: Monotone iterative technique for differential equations in a Banach space.J. Math. Anal. Appl. 87 (1982), 454-459. Zbl 0523.34057, MR 0658024, 10.1016/0022-247X(82)90134-2
Reference: [16] Erbe, L. H., Liu, X.: Quasi-solutions of nonlinear impulsive equations in abstract cones.Appl. Anal. 34 (1989), 231-250. Zbl 0662.34015, MR 1387172, 10.1080/00036818908839897
Reference: [17] Ezzinbi, K., Fu, X., Hilal, K.: Existence and regularity in the $\alpha$-norm for some neutral partial differential equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl. 67 (2007), 1613-1622. Zbl 1119.35105, MR 2323307, 10.1016/j.na.2006.08.003
Reference: [18] Fan, Z.: Existence of nondensely defined evolution equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl. 70 (2009), 3829-3836. Zbl 1170.34345, MR 2515302, 10.1016/j.na.2008.07.036
Reference: [19] Fan, Z.: Impulsive problems for semilinear differential equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1104-1109. Zbl 1188.34073, MR 2579372, 10.1016/j.na.2009.07.049
Reference: [20] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions.J. Funct. Anal. 258 (2010), 1709-1727. Zbl 1193.35099, MR 2566317, 10.1016/j.jfa.2009.10.023
Reference: [21] Fu, X., Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl. 54 (2003), 215-227. Zbl 1034.34096, MR 1979731, 10.1016/S0362-546X(03)00047-6
Reference: [22] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [23] Guo, D., Liu, X.: Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces.J. Math. Anal. Appl. 177 (1993), 538-552. Zbl 0787.45008, MR 1231500, 10.1006/jmaa.1993.1276
Reference: [24] Heinz, H.-P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions.Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. Zbl 0528.47046, MR 0726478
Reference: [25] Jackson, D.: Existence and uniqueness of solutions to semilinear nonlocal parabolic equations.J. Math. Anal. Appl. 172 (1993), 256-265. Zbl 0814.35060, MR 1199510, 10.1006/jmaa.1993.1022
Reference: [26] Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions.Appl. Math. Comput. 217 (2011), 6981-6989. Zbl 1219.93013, MR 2775688, 10.1016/j.amc.2011.01.107
Reference: [27] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [28] Li, Y.: Existence of solutions of initial value problems for abstract semilinear evolution equations.Acta Math. Sin. 48 (2005), 1089-1094 Chinese. Zbl 1124.34341, MR 2205049
Reference: [29] Li, Y.: The positive solutions of abstract semilinear evolution equations and their applications.Acta Math. Sin. 39 (1996), 666-672 Chinese. Zbl 0870.47040, MR 1436036
Reference: [30] Li, Y., Liu, Z.: Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces.Nonlinear Anal., Theory Methods Appl. 66 (2007), 83-92. Zbl 1109.34005, MR 2271638, 10.1016/j.na.2005.11.013
Reference: [31] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal Cauchy problems governed by compact operator families.Nonlinear Anal., Theory Methods Appl. 57 (2004), 183-189. Zbl 1083.34045, MR 2056425, 10.1016/j.na.2004.02.007
Reference: [32] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces.Math. Comput. Modelling 49 (2009), 798-804. Zbl 1173.34048, MR 2483682, 10.1016/j.mcm.2008.05.046
Reference: [33] Liang, J., Casteren, J. van, Xiao, T.-J.: Nonlocal Cauchy problems for semilinear evolution equations.Nonlinear Anal., Theory Methods Appl. 50 (2002), 173-189. MR 1904939, 10.1016/S0362-546X(01)00743-X
Reference: [34] Lin, Y., Liu, J. H.: Semilinear integrodifferential equations with nonlocal Cauchy problem.Nonlinear Anal., Theory Methods Appl. 26 (1996), 1023-1033. Zbl 0916.45014, MR 1362770, 10.1016/0362-546X(94)00141-0
Reference: [35] Liu, J. H.: Nonlinear impulsive evolution equations.Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. Zbl 0932.34067, MR 1679758
Reference: [36] Ntouyas, S. K., Tsamatos, P. C.: Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions.Appl. Anal. 64 (1997), 99-105. Zbl 0874.35126, MR 1460074, 10.1080/00036819708840525
Reference: [37] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44 Springer, New York (1983). Zbl 0516.47023, MR 0710486
Reference: [38] Rogovchenko, Y. V.: Impulsive evolution systems: Main results and new trends.Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. Zbl 0879.34014, MR 1435816
Reference: [39] Sun, J., Zhao, Z.: Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces.Ann. Differ. Equations 8 (1992), 469-475. MR 1215993
Reference: [40] Xiao, T.-J., Liang, J.: Existence of classical solutions to nonautonomous nonlocal parabolic problems.Nonlinear Anal., Theory Methods Appl. (electronic only) 63 (2005), e225--e232. Zbl 1159.35383, 10.1016/j.na.2005.02.067
Reference: [41] Xue, X.: Nonlinear differential equations with nonlocal conditions in Banach spaces.Nonlinear Anal., Theory Methods Appl. 63 (2005), 575-586. Zbl 1095.34040, MR 2175816, 10.1016/j.na.2005.05.019
Reference: [42] Xue, X.: Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces.Nonlinear Anal., Theory Methods Appl. 70 (2009), 2593-2601. Zbl 1176.34071, MR 2499726, 10.1016/j.na.2008.03.046
.

Files

Files Size Format View
AplMat_59-2014-1_8.pdf 336.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo