Previous |  Up |  Next

Article

Title: Dynamic analysis of an impulsive differential equation with time-varying delays (English)
Author: Li, Ying
Author: Shao, Yuanfu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 85-98
Summary lang: English
.
Category: math
.
Summary: An impulsive differential equation with time varying delay is proposed in this paper. By using some analysis techniques with combination of coincidence degree theory, sufficient conditions for the permanence, the existence and global attractivity of positive periodic solution are established. The results of this paper improve and generalize some previously known results. (English)
Keyword: periodic solution
Keyword: permanence
Keyword: attractivity
Keyword: impulse
Keyword: delay
MSC: 34D20
MSC: 34D23
MSC: 34K13
MSC: 34K45
MSC: 93D20
idZBL: Zbl 06346374
idMR: MR3164578
DOI: 10.1007/s10492-014-0043-9
.
Date available: 2014-01-28T13:58:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143600
.
Reference: [1] Alzabut, J. O., Abdeljawad, T.: On existence of a globally attractive periodic solution of impulsive delay logarithmic population model.Appl. Math. Comput. 198 (2008), 463-469. Zbl 1163.92033, MR 2403966, 10.1016/j.amc.2007.08.024
Reference: [2] Ding, X., Jiang, J.: Periodicity in a generalized semi-ratio-dependent predator-prey system with time delays and impulses.J. Math. Anal. Appl. 360 (2009), 223-234. Zbl 1185.34121, MR 2548378, 10.1016/j.jmaa.2009.06.048
Reference: [3] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568 Springer, Berlin (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [4] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics.Mathematics and its Applications 74 Kluwer Academic Publishers, Dordrecht (1992). Zbl 0752.34039, MR 1163190
Reference: [5] He, M., Chen, F.: Dynamic behaviors of the impulsive periodic multi-species predator-prey system.Comput. Math. Appl. 57 (2009), 248-256. Zbl 1165.34308, MR 2488380, 10.1016/j.camwa.2008.09.041
Reference: [6] Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics.Mathematics in Science and Engineering 191 Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880
Reference: [7] Lakshmikantham, V., Bajnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [8] Liu, X., Takeuchi, Y.: Periodicity and global dynamics of an impulsive delay Lasota-Wazewska model.J. Math. Anal. Appl. 327 (2007), 326-341. Zbl 1116.34063, MR 2277416, 10.1016/j.jmaa.2006.04.026
Reference: [9] Nazarenko, V. G.: Influence of delay on auto oscillation in cell population.Biofisika 21 (1976), 352-356.
Reference: [10] Saker, S. H., Alzabut, J. O.: Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model.Nonlinear Anal., Real World Appl. 8 (2007), 1029-1039. Zbl 1124.34054, MR 2331425
Reference: [11] Shao, Y., Dai, B., Luo, Z.: The dynamics of an impulsive one-prey multi-predators system with delay and Holling-type II functional response.Appl. Math. Comput. 217 (2010), 2414-2424. Zbl 1200.92044, MR 2733684, 10.1016/j.amc.2010.07.042
Reference: [12] Shao, Y., Li, Y., Xu, C.: Periodic solutions for a class of nonautonomous differential system with impulses and time-varying delays.Acta Appl. Math. 115 (2011), 105-121. Zbl 1247.34121, MR 2812979, 10.1007/s10440-010-9598-y
Reference: [13] Yan, J., Zhao, A.: Oscillation and stability of linear impulsive delay differential equations.J. Math. Anal. Appl. 227 (1998), 187-194. Zbl 0917.34060, MR 1652915, 10.1006/jmaa.1998.6093
.

Files

Files Size Format View
AplMat_59-2014-1_7.pdf 284.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo