[6] Dilcher, K., Skula, L.: 
A new criterion for the first case of Fermat's last theorem. Math. Comput. 64 (1995), 363-392. 
MR 1248969 | 
Zbl 0817.11022 
[7] Dilcher, K., Skula, L.: 
The cube of the Fermat quotient. Integers (electronic only) 6 (2006), Paper A24, 12 pages. 
MR 2264839 | 
Zbl 1103.11011 
[8] Dilcher, K., Skula, L., Slavutskii, I. S., eds.: 
Bernoulli numbers. Bibliography (1713-1990). Enlarged ed. Queen's Papers in Pure and Applied Mathematics 87. Queen's University Kingston (1991). 
MR 1119305 
[9] Dobson, J. B.: On Lerch's formula for the Fermat quotient. Preprint, arXiv:1103.3907v3, 2012.
[10] Dorais, F. G., Klyve, D.: 
A Wieferich prime search up to $6\cdot 7\times 10^{15}$. J. Integer Seq. (electronic only) 14 (2011), Article 11.9.2, 14 pages. 
MR 2859986 
[11] Eisenstein, G.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden. Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42  
Mathematische Werke. Band II Chelsea Publishing Company New York 705-711 (1975), German.
[13] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$. Quart. J. 31 (1900), 321-353.
[14] Glaisher, J. W. L.: On the residues of $r^{p-1}$ to modulus $p^2$, $p^3$, etc. Quart. J. 32 (1900), 1-27.
[15] Granville, A.: 
Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers. Organic Mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. CMS Conf. Proc. 20 J. Borwein et al. American Mathematical Society Providence (1997), 253-276. 
MR 1483922 | 
Zbl 0903.11005 
[16] Granville, A.: 
Some conjectures related to Fermat's Last Theorem. Number Theory. Proceedings of the first conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, Canada, April 17-27, 1988 R. A. Mollin Walter de Gruyter Berlin (1990), 177-192. 
MR 1106660 | 
Zbl 0702.11015 
[17] Granville, A.: 
The square of the Fermat quotient. Integers 4 (2004), Paper A22, 3 pages, electronic only. 
MR 2116007 | 
Zbl 1083.11005 
[18] Jakubec, S.: 
Note on the congruences $2^{p-1}\equiv 1 \pmod{p^2}$, $3^{p-1}\equiv 1 \pmod{p^2}$, $5^{p-1}\equiv 1 \pmod{p^2}$. Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. 
MR 1822520 | 
Zbl 1024.11002 
[22] Lehmer, E.: 
On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. 39 (1938), 350-360. 
MR 1503412 | 
Zbl 0019.00505 
[26] Pan, H.: 
On a generalization of Carlitz's congruence. Int. J. Mod. Math. 4 (2009), 87-93. 
MR 2508944 | 
Zbl 1247.11025 
[28] Skula, L.: 
A Remark on Mirimanoff polynomials. Comment. Math. Univ. St. Pauli 31 (1982), 89-97. 
MR 0674586 | 
Zbl 0496.10006 
[29] Skula, L.: 
Fermat and Wilson quotients for $p$-adic integers. Acta Math. Inform. Univ. Ostrav. 6 (1998), 167-181. 
MR 1822528 | 
Zbl 1025.11001 
[30] Skula, L.: 
Fermat's Last theorem and the Fermat quotients. Comment. Math. Univ. St. Pauli 41 (1992), 35-54. 
MR 1166223 | 
Zbl 0753.11016 
[32] Slavutsky, I. S.: 
Leudesdorf's theorem and Bernoulli numbers. Arch. Math., Brno 35 (1999), 299-303. 
MR 1744517 
[37] Sun, Z. H.: 
The combinatorial sum $\sum\nolimits_{k=0 , k\equiv r \pmod{m}}^n \binom{n}{k}$ and its applications in number theory II. J. Nanjing Univ., Math. Biq. 10 (1993), 105-118 Chinese. 
MR 1248315 
[40] Sun, Z. W.: 
On the sum $\sum\nolimits_{k\equiv r \pmod{m}} \binom{n}{k}$ and related congruences. Isr. J. Math. 128 (2002), 135-156. 
DOI 10.1007/BF02785421 | 
MR 1910378 
[41] Sylvester, J. J.: Sur une propriété des nombres premiers qui se ratache au théoreme de Fermat. C. R. Acad. Sci. Paris 52 (1861), 161-163  
The Collected Mathematical Papers of James Joseph Sylvester. Volume II (1854-1873). With Two Plates Cambridge University Press Cambridge 229-231 (1908).
[42] Tauraso, R.: 
Congruences involving alternating multiple harmonic sums. Electron. J. Comb. 17 (2010), Research Paper R16, 11 pages. 
MR 2587747 | 
Zbl 1222.11006 
[43] Wieferich, A.: On Fermat's Last Theorem. J. für Math. 136 (1909), 293-302 German.
[44] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. 5 (1862), 35-39.