Title:
|
Congruences involving the Fermat quotient (English) |
Author:
|
Meštrović, Romeo |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
4 |
Year:
|
2013 |
Pages:
|
949-968 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $p>3$ be a prime, and let $q_p(2)=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. In this note we prove that $$ \sum _{k=1}^{p-1} \frac {1}{k\cdot 2^k} \equiv q_p(2)-\frac {pq_p(2)^2}{2}+ \frac {p^2 q_p(2)^3}{3} -\frac {7}{48} p^2 B_{p-3}\pmod {p^3}, $$ which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that $$ q_p(2)^3 \equiv -3\sum _{k=1}^{p-1} \frac {2^k}{k^3}+ \frac {7}{16} \sum _{k=1}^{(p-1)/2} \frac {1}{k^3} \pmod {p}, $$ which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $\sum _{k=1}^{p-1}1/(k^2\cdot 2^k)$ modulo $p^2$ that also generalizes a related Sun's congruence modulo $p$. (English) |
Keyword:
|
Fermat quotient |
Keyword:
|
$n$th harmonic number of order $m$ |
Keyword:
|
Bernoulli number |
MSC:
|
05A10 |
MSC:
|
05A19 |
MSC:
|
11A07 |
MSC:
|
11B65 |
idZBL:
|
Zbl 06373954 |
idMR:
|
MR3165507 |
DOI:
|
10.1007/s10587-013-0064-7 |
. |
Date available:
|
2014-01-28T14:09:50Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143609 |
. |
Reference:
|
[1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli.J. Number Theory 66 (1997), 29-50. Zbl 0884.11003, MR 1467188, 10.1006/jnth.1997.2162 |
Reference:
|
[2] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli.Math. Comput. 67 (1998), 843-861. Zbl 1024.11003, MR 1464140, 10.1090/S0025-5718-98-00951-X |
Reference:
|
[3] Agoh, T., Skula, L.: The fourth power of the Fermat quotient.J. Number Theory 128 (2008), 2865-2873. Zbl 1195.11009, MR 2457841, 10.1016/j.jnt.2008.06.001 |
Reference:
|
[4] Cao, H.-Q., Pan, H.: A congruence involving products of $q$-binomial coefficients.J. Number Theory 121 (2006), 224-233. Zbl 1135.11003, MR 2274904, 10.1016/j.jnt.2006.02.004 |
Reference:
|
[5] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes.Math. Comp. 66 (1997), 433-449. Zbl 0854.11002, MR 1372002, 10.1090/S0025-5718-97-00791-6 |
Reference:
|
[6] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem.Math. Comput. 64 (1995), 363-392. Zbl 0817.11022, MR 1248969 |
Reference:
|
[7] Dilcher, K., Skula, L.: The cube of the Fermat quotient.Integers (electronic only) 6 (2006), Paper A24, 12 pages. Zbl 1103.11011, MR 2264839 |
Reference:
|
[8] Dilcher, K., Skula, L., Slavutskii, I. S., eds.: Bernoulli numbers. Bibliography (1713-1990). Enlarged ed. Queen's Papers in Pure and Applied Mathematics 87.Queen's University Kingston (1991). MR 1119305 |
Reference:
|
[9] Dobson, J. B.: On Lerch's formula for the Fermat quotient.Preprint, arXiv:1103.3907v3, 2012. |
Reference:
|
[10] Dorais, F. G., Klyve, D.: A Wieferich prime search up to $6\cdot 7\times 10^{15}$.J. Integer Seq. (electronic only) 14 (2011), Article 11.9.2, 14 pages. MR 2859986 |
Reference:
|
[11] Eisenstein, G.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden.Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42 <title>Mathematische Werke. Band II Chelsea Publishing Company New York 705-711 (1975), German. |
Reference:
|
[12] Ernvall, R., Metsänkylä, T.: On the $p$-divisibility of Fermat quotients.Math. Comput. 66 (1997), 1353-1365. Zbl 0903.11002, MR 1408373, 10.1090/S0025-5718-97-00843-0 |
Reference:
|
[13] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$.Quart. J. 31 (1900), 321-353. |
Reference:
|
[14] Glaisher, J. W. L.: On the residues of $r^{p-1}$ to modulus $p^2$, $p^3$, etc.Quart. J. 32 (1900), 1-27. |
Reference:
|
[15] Granville, A.: Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers.Organic Mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. CMS Conf. Proc. 20 J. Borwein et al. American Mathematical Society Providence (1997), 253-276. Zbl 0903.11005, MR 1483922 |
Reference:
|
[16] Granville, A.: Some conjectures related to Fermat's Last Theorem.Number Theory. Proceedings of the first conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, Canada, April 17-27, 1988 R. A. Mollin Walter de Gruyter Berlin (1990), 177-192. Zbl 0702.11015, MR 1106660 |
Reference:
|
[17] Granville, A.: The square of the Fermat quotient.Integers 4 (2004), Paper A22, 3 pages, electronic only. Zbl 1083.11005, MR 2116007 |
Reference:
|
[18] Jakubec, S.: Note on the congruences $2^{p-1}\equiv 1 \pmod{p^2}$, $3^{p-1}\equiv 1 \pmod{p^2}$, $5^{p-1}\equiv 1 \pmod{p^2}$.Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. Zbl 1024.11002, MR 1822520 |
Reference:
|
[19] Jakubec, S.: Note on Wieferich's congruence for primes $p\equiv 1\pmod{4 }$.Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. Zbl 0954.11009, MR 1658393, 10.1007/BF02942562 |
Reference:
|
[20] Jakubec, S.: Connection between Fermat quotients and Euler numbers.Math. Slovaca 58 (2008), 19-30. Zbl 1164.11014, MR 2372823, 10.2478/s12175-007-0052-1 |
Reference:
|
[21] Kohnen, W.: A simple congruence modulo $p$.Am. Math. Mon. 104 (1997), 444-445. Zbl 0880.11002, MR 1447978, 10.2307/2974738 |
Reference:
|
[22] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. 39 (1938), 350-360. Zbl 0019.00505, MR 1503412 |
Reference:
|
[23] Lerch, M.: Zur Theorie des Fermatschen Quotienten $(a^{p-1}-1)/p=q(a)$.Math. Ann. 60 (1905), 471-490 German. MR 1511321, 10.1007/BF01561092 |
Reference:
|
[24] Meštrović, R.: An extension of Sury's identity and related congruences.Bull. Aust. Math. Soc. 85 (2012), 482-496. Zbl 1273.11033, MR 2924776, 10.1017/S0004972711002826 |
Reference:
|
[25] Meštrović, R.: An elementary proof of a congruence by Skula and Granville.Arch. Math., Brno 48 (2012), 113-120. Zbl 1259.11006, MR 2946211, 10.5817/AM2012-2-113 |
Reference:
|
[26] Pan, H.: On a generalization of Carlitz's congruence.Int. J. Mod. Math. 4 (2009), 87-93. Zbl 1247.11025, MR 2508944 |
Reference:
|
[27] Ribenboim, P.: 13 Lectures on Fermat's Last Theorem.Springer New York (1979). Zbl 0456.10006, MR 0551363 |
Reference:
|
[28] Skula, L.: A Remark on Mirimanoff polynomials.Comment. Math. Univ. St. Pauli 31 (1982), 89-97. Zbl 0496.10006, MR 0674586 |
Reference:
|
[29] Skula, L.: Fermat and Wilson quotients for $p$-adic integers.Acta Math. Inform. Univ. Ostrav. 6 (1998), 167-181. Zbl 1025.11001, MR 1822528 |
Reference:
|
[30] Skula, L.: Fermat's Last theorem and the Fermat quotients.Comment. Math. Univ. St. Pauli 41 (1992), 35-54. Zbl 0753.11016, MR 1166223 |
Reference:
|
[31] Skula, L.: A note on some relations among special sums of reciprocals modulo $p$.Math. Slovaca 58 (2008), 5-10. Zbl 1164.11001, MR 2372821, 10.2478/s12175-007-0050-3 |
Reference:
|
[32] Slavutsky, I. S.: Leudesdorf's theorem and Bernoulli numbers.Arch. Math., Brno 35 (1999), 299-303. MR 1744517 |
Reference:
|
[33] Spivey, M. Z.: Combinatorial sums and finite differences.Discrete Math. 307 (2007), 3130-3146. Zbl 1129.05006, MR 2370116, 10.1016/j.disc.2007.03.052 |
Reference:
|
[34] Sun, Z. H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials.Discrete Appl. Math. 105 (2000), 193-223. Zbl 0990.11008, MR 1780472, 10.1016/S0166-218X(00)00184-0 |
Reference:
|
[35] Sun, Z. H.: Congruences involving Bernoulli and Euler numbers.J. Number Theory 128 (2008), 280-312. Zbl 1154.11010, MR 2380322, 10.1016/j.jnt.2007.03.003 |
Reference:
|
[36] Sun, Z. H.: Five congruences for primes.Fibonacci Q. 40 (2002), 345-351. Zbl 1009.11004, MR 1920576 |
Reference:
|
[37] Sun, Z. H.: The combinatorial sum $\sum\nolimits_{k=0 , k\equiv r \pmod{m}}^n \binom{n}{k}$ and its applications in number theory II.J. Nanjing Univ., Math. Biq. 10 (1993), 105-118 Chinese. MR 1248315 |
Reference:
|
[38] Sun, Z. W.: A congruence for primes.Proc. Am. Math. Soc. 123 (1995), 1341-1346. Zbl 0833.11001, MR 1242105, 10.1090/S0002-9939-1995-1242105-X |
Reference:
|
[39] Sun, Z. W.: Binomial coefficients, Catalan numbers and Lucas quotients.Sci. China, Math. 53 (2010), 2473-2488. Zbl 1221.11054, MR 2718841, 10.1007/s11425-010-3151-3 |
Reference:
|
[40] Sun, Z. W.: On the sum $\sum\nolimits_{k\equiv r \pmod{m}} \binom{n}{k}$ and related congruences.Isr. J. Math. 128 (2002), 135-156. MR 1910378, 10.1007/BF02785421 |
Reference:
|
[41] Sylvester, J. J.: Sur une propriété des nombres premiers qui se ratache au théoreme de Fermat.C. R. Acad. Sci. Paris 52 (1861), 161-163 <title>The Collected Mathematical Papers of James Joseph Sylvester. Volume II (1854-1873). With Two Plates Cambridge University Press Cambridge 229-231 (1908). |
Reference:
|
[42] Tauraso, R.: Congruences involving alternating multiple harmonic sums.Electron. J. Comb. 17 (2010), Research Paper R16, 11 pages. Zbl 1222.11006, MR 2587747 |
Reference:
|
[43] Wieferich, A.: On Fermat's Last Theorem.J. für Math. 136 (1909), 293-302 German. |
Reference:
|
[44] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. 5 (1862), 35-39. |
. |