Previous |  Up |  Next

Article

Title: Some properties of the family $\Gamma $ of modular Lie superalgebras (English)
Author: Xu, Xiaoning
Author: Chen, Liangyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1087-1112
Summary lang: English
.
Category: math
.
Summary: In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable. (English)
Keyword: modular Lie superalgebra
Keyword: restricted Lie superalgebra
Keyword: filtration
MSC: 17B50
idZBL: Zbl 1299.17017
idMR: MR3165516
DOI: 10.1007/s10587-013-0073-6
.
Date available: 2014-01-28T14:23:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143618
.
Reference: [1] Block, R. E., Wilson, R. L.: Classification of the restricted simple Lie algebras.J. Algebra 114 (1988), 115-259. MR 0931904, 10.1016/0021-8693(88)90216-5
Reference: [2] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix.SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009). Zbl 1220.17010, MR 2529187
Reference: [3] Martin, A. J. Calderón, Delgado, J. M. Sánchez: On the structure of graded Lie superalgebras.Mod. Phys. Lett. A 27 (2012), 1250142, 18 pages. MR 2966788, 10.1142/S0217732312501428
Reference: [4] Chen, L. Y., Meng, D. J., Zhang, Y. Z.: The Frattini subalgebra of restricted Lie superalgebras.Acta Math. Sin., Engl. Ser. 22 (2006), 1343-1356. Zbl 1127.17020, MR 2251395, 10.1007/s10114-005-0670-x
Reference: [5] Draper, C., Elduque, A., González, C. Martín: Fine gradings on exceptional simple Lie superalgebras.Int. J. Math. 22 (2011), 1823-1855. MR 2872534, 10.1142/S0129167X11007392
Reference: [6] Fei, Q. Y.: On new simple Lie algebras of Shen Guangyu.Chin. Ann. Math., Ser. B 10 (1989), 448-457. Zbl 0695.17004, MR 1038379
Reference: [7] Kac, V. G.: The classification of the restricted simple Lie algebras over a field with non-zero characteristic.Math. USSR, Izv. 4 (1970), 391-413. MR 0276286, 10.1070/IM1970v004n02ABEH000912
Reference: [8] Kac, V. G.: A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated.Math. USSR, Izv. 8 (1975), 801-835 \kern 3sp translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian. MR 0369452
Reference: [9] Kac, V. G.: Lie superalgebras.Adv. Math. 26 (1977), 8-96. Zbl 0367.17007, MR 0486011, 10.1016/0001-8708(77)90017-2
Reference: [10] Kac, V. G.: Classification of infinite-dimensional simple linearly compact Lie superalgebras.Adv. Math. (1998), 139 1-55. Zbl 0929.17026, MR 1652530
Reference: [11] Kochetkov, Y., Leites, D.: Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group.Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67. Zbl 0765.17006, MR 1175822
Reference: [12] Leites, D.: Towards classification of simple finite dimensional modular Lie superalgebras.J. Prime Res. Math. 3 (2007), 101-110. Zbl 1172.17011, MR 2397769
Reference: [13] Liu, W. D., Zhang, Y. Z., Wang, X. L.: The derivation algebra of the Cartan-type Lie superalgebra $HO$.J. Algebra 273 (2004), 176-205. Zbl 1162.17308, MR 2032456, 10.1016/j.jalgebra.2003.10.019
Reference: [14] Liu, W. D., Zhang, Y. Z.: Automorphism groups of restricted Cartan-type Lie superalgebras.Commun. Algebra 34 (2006), 3767-3784. Zbl 1193.17010, MR 2262384, 10.1080/00927870600862615
Reference: [15] Petrogradskiĭ, V. M.: Identities in the enveloping algebras of modular Lie superalgebras.J. Algebra 145 (1992), 1-21. MR 1144655, 10.1016/0021-8693(92)90173-J
Reference: [16] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction.Lecture Notes in Mathematics 716 Springer, Berlin (1979). Zbl 0407.17001, MR 0537441, 10.1007/BFb0070929
Reference: [17] Shen, G. Y.: An intrinsic property of the Lie algebra $K(m,n)$.Chin. Ann. Math. 2 (1981), 105-115. Zbl 0498.17009
Reference: [18] Shen, G. Y.: New simple Lie algebras of characteristic $p$.Chin. Ann. Math., Ser. B 4 (1983), 329-346. Zbl 0507.17007, MR 0742032
Reference: [19] Strade, H.: The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra.Ann. Math. (2) 138 (1993), 1-59. Zbl 0790.17011, MR 1230926
Reference: [20] Strade, H., Farnsteiner, R.: Modular Lie Algebras and Their Representations.Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988). Zbl 0648.17003, MR 0929682
Reference: [21] Strade, H., Wilson, R. L.: Classification of simple Lie algebras over algebraically closed fields of prime characteristic.Bull. Am. Math. Soc., New Ser. 24 (1991), 357-362. Zbl 0725.17023, MR 1071032, 10.1090/S0273-0979-1991-16033-7
Reference: [22] Wang, Y., Zhang, Y. Z.: A new definition of restricted Lie superalgebras.Chinese Kexue Tongbao 44 (1999), 807-813. MR 1733605
Reference: [23] Wang, Y., Zhang, Y. Z.: The associative forms of the graded Cartan type Lie superalgebras.Adv. Math., Beijing 29 (2000), 65-70. Zbl 1009.17015, MR 1769128
Reference: [24] Wang, W. Q., Zhao, L.: Representations of Lie superalgebras in prime characteristic. I.Proc. Lond. Math. Soc. 99 (2009), 145-167. Zbl 1176.17013, MR 2520353, 10.1112/plms/pdn057
Reference: [25] Wang, X. L., Liu, W. D.: Filtered Lie superalgebras of odd Hamiltonian type $HO$.English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720. MR 2417896
Reference: [26] Wilson, R. L.: A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic.J. Algebra 40 (1976), 418-465. Zbl 0355.17012, MR 0412239, 10.1016/0021-8693(76)90206-4
Reference: [27] Xu, X. N., Zhang, Y. Z., Chen, L. Y.: The finite-dimensional modular Lie superalgebra $\Gamma$.Algebra Colloq. 17 (2010), 525-540. Zbl 1203.17009, MR 2660443
Reference: [28] Xu, X. N., Chen, L. Y., Zhang, Y. Z.: On the modular Lie superalgebra $\Omega$.J. Pure Appl. Algebra 215 (2011), 1093-1101. MR 2747241, 10.1016/j.jpaa.2010.07.014
Reference: [29] Zhang, Y. Z.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic.Chin. Sci. Bull. 42 (1997), 720-724. Zbl 0886.17022, MR 1460613, 10.1007/BF03186962
Reference: [30] Zhang, Y. Z., Nan, J. Z.: Finite-dimensional Lie superalgebras $W(m,n, t)$ and $S(m,n, t)$ of Cartan type.Adv. Math., Beijing 27 (1998), 240-246. MR 1651296
Reference: [31] Zhang, Y. Z., Fu, H. C.: Finite-dimensional Hamiltonian Lie superalgebra.Commun. Algebra 30 (2002), 2651-2673. Zbl 1021.17017, MR 1908231, 10.1081/AGB-120003981
Reference: [32] Zhang, Y. Z., Liu, W. D.: Modular Lie superalgebras.Chinese Science Press Beijing (2004). MR 2100474
Reference: [33] Zhang, Y. Z., Zhang, Q. C.: Finite-dimensional modular Lie superalgebra $\Omega$.J. Algebra 321 (2009), 3601-3619. Zbl 1203.17010, MR 2517804, 10.1016/j.jalgebra.2009.01.038
.

Files

Files Size Format View
CzechMathJ_63-2013-4_16.pdf 382.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo