Previous |  Up |  Next

Article

Title: Estimates for the commutator of bilinear Fourier multiplier (English)
Author: Hu, Guoen
Author: Yi, Wentan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1113-1134
Summary lang: English
.
Category: math
.
Summary: Let $b_1, b_2 \in {\rm BMO}(\mathbb {R}^n)$ and $T_{\sigma }$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb {Z}} \|\sigma _{\kappa }\| _{W^{s_1,s_2}(\mathbb {R}^{2n})}<\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^{p_1}(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_2\in [2,\infty ))$, and on $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$, is considered for the commutator $T_{{\sigma }, \vec {b}} $ defined by $$ \begin {aligned} T_{\sigma ,\vec {b}} (f_1,f_2) (x)=&b_1(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(b_1f_1, f_2)(x) &+ b_2(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(f_1, b_2f_2)(x) . \end {aligned} $$ By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita. (English)
Keyword: bilinear Fourier multiplier operator
Keyword: commutator
Keyword: Hardy space
MSC: 42B15
idZBL: Zbl 06373964
idMR: MR3165517
DOI: 10.1007/s10587-013-0074-5
.
Date available: 2014-01-28T14:24:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143619
.
Reference: [1] Anh, B. T., Duong, X. T.: Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers.Bull. Sci. Math. 137 (2013), 63-75. Zbl 1266.42019, MR 3007100, 10.1016/j.bulsci.2012.04.001
Reference: [2] Christ, M.: Weak type (1,1) bounds for rough operators.Ann. Math. (2) 128 (1998), 19-42. MR 0951506
Reference: [3] Coifman, R. R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals.Trans. Am. Math. Soc. 212 (1975), 315-331. Zbl 0324.44005, MR 0380244, 10.1090/S0002-9947-1975-0380244-8
Reference: [4] Coifman, R. R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and PDE.Beijing Lectures in Harmonic Analysis. (Summer School in Analysis, Beijing, The People's Republic of China, September 1984). Annals of Mathematics Studies 112 Princeton University Press Princeton (1986), 3-45. MR 0864370
Reference: [5] Fujita, M., Tomita, N.: Weighted norm inequalities for multilinear Fourier multipliers.Trans. Am. Math. Soc. 364 (2012), 6335-6353. Zbl 1275.42015, MR 2958938, 10.1090/S0002-9947-2012-05700-X
Reference: [6] García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J. L.: Weighted norm inequalities for commutators of strongly singular integrals.Indiana Univ. Math. J. 40 (1991), 1397-1420. Zbl 0765.42012, MR 1142721, 10.1512/iumj.1991.40.40063
Reference: [7] Grafakos, L., Miyachi, A., Tomita, N.: On multilinear Fourier multipliers of limited smoothness.Can. J. Math. 65 (2013), 299-330. Zbl 1275.42016, MR 3028565, 10.4153/CJM-2012-025-9
Reference: [8] Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators.J. Reine Angew. Math. 668 (2012), 133-147. Zbl 1254.42017, MR 2948874
Reference: [9] Grafakos, L., Torres, R. H.: Multilinear Calderón-Zygmund theory.Adv. Math. 165 (2002), 124-164. Zbl 1032.42020, MR 1880324, 10.1006/aima.2001.2028
Reference: [10] Hu, G., Lin, C.-C.: Weighted norm inequalities for multilinear singular integral operators and applications.arXiv: 1208.6346.
Reference: [11] Kenig, C. E., Stein, E. M.: Multilinear estimates and fractional integration.Math. Res. Lett. 6 (1999), 1-15. Zbl 0952.42005, MR 1682725, 10.4310/MRL.1999.v6.n1.a1
Reference: [12] Kurtz, D. S., Wheeden, R. L.: Results on weighted norm inequalities for multipliers.Trans. Am. Math. Soc. 255 (1979), 343-362. Zbl 0427.42004, MR 0542885, 10.1090/S0002-9947-1979-0542885-8
Reference: [13] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory.Adv. Math. 220 (2009), 1222-1264. Zbl 1160.42009, MR 2483720, 10.1016/j.aim.2008.10.014
Reference: [14] Meda, S., Sjögren, P., Vallarino, M.: On the $H^1-L^1$ boundedness of operators.Proc. Am. Math. Soc. 136 (2008), 2921-2931. Zbl 1273.42021, MR 2399059, 10.1090/S0002-9939-08-09365-9
Reference: [15] Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers.Rev. Mat. Iberoam. 29 495-530 (2013). Zbl 1275.42017, MR 3047426, 10.4171/RMI/728
Reference: [16] Pérez, C., Torres, R. H.: Sharp maximal function estimates for multilinear singular integrals.Harmonic Analysis at Mount Holyoke. Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, Mount Holyoke College, South Hadley, MA, USA, June 25--July 5, 2001 W. Beckner et al. American Mathematical Society Providence Contemp. Math. 320 (2003), 323-331. Zbl 1045.42011, MR 1979948, 10.1090/conm/320/05615
Reference: [17] Tomita, N.: A Hörmander type multiplier theorem for multilinear operators.J. Funct. Anal. 259 (2010), 2028-2044. Zbl 1201.42005, MR 2671120, 10.1016/j.jfa.2010.06.010
.

Files

Files Size Format View
CzechMathJ_63-2013-4_17.pdf 347.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo