Previous |  Up |  Next

Article

Title: Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes (English)
Author: Tian, Yanling
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 2
Year: 2014
Pages: 217-240
Summary lang: English
.
Category: math
.
Summary: A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification of the model. (English)
Keyword: delayed diffusive predator-prey model
Keyword: modified Leslie-Gower scheme
Keyword: Holling-type II scheme
Keyword: persistence
Keyword: stability
Keyword: eigenvalue
Keyword: monotonous iterative sequence
MSC: 35B25
MSC: 35K51
MSC: 35K55
MSC: 92C40
MSC: 92D25
idZBL: Zbl 06362223
idMR: MR3183474
DOI: 10.1007/s10492-014-0051-9
.
Date available: 2014-03-20T08:24:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143631
.
Reference: [1] Aziz-Alaoui, M. A., Okiye, M. Daher: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes.Appl. Math. Lett. 16 (2003), 1069-1075. MR 2013074, 10.1016/S0893-9659(03)90096-6
Reference: [2] Chen, B., Wang, M.: Qualitative analysis for a diffusive predator-prey model.Comput. Math. Appl. 55 (2008), 339-355. Zbl 1155.35390, MR 2384151, 10.1016/j.camwa.2007.03.020
Reference: [3] Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge.J. Differ. Equations 231 (2006), 534-550. MR 2287896, 10.1016/j.jde.2006.08.001
Reference: [4] Lindström, T.: Global stability of a model for competing predators: An extension of the Ardito & Ricciardi Lyapunov function.Nonlinear Anal., Theory Methods Appl. 39 (2000), 793-805. Zbl 0945.34037, MR 1733130
Reference: [5] Murray, J. D.: Mathematical Biology, Vol. 1: An Introduction. 3rd ed.Interdisciplinary Applied Mathematics 17 Springer, New York (2002). Zbl 1006.92001, MR 1908418
Reference: [6] Murray, J. D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. 3rd revised ed.Interdisciplinary Applied Mathematics 18 Springer, New York (2003). Zbl 1006.92002, MR 1952568
Reference: [7] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay.Nonlinear Anal., Real World Appl. 7 (2006), 1104-1118. Zbl 1104.92065, MR 2260902
Reference: [8] Pao, C. V.: Dynamics of nonlinear parabolic systems with time delays.J. Math. Anal. Appl. 198 (1996), 751-779. Zbl 0860.35138, MR 1377823, 10.1006/jmaa.1996.0111
Reference: [9] Ryu, K., Ahn, I.: Positive solutions for ratio-dependent predator-prey interaction systems.J. Differ. Equations 218 (2005), 117-135. MR 2174969, 10.1016/j.jde.2005.06.020
Reference: [10] Tian, Y., Weng, P.: Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes.Acta Appl. Math. 114 (2011), 173-192. Zbl 1216.35159, MR 2794080, 10.1007/s10440-011-9607-9
Reference: [11] Upadhyay, R. K., Iyengar, S. R. K.: Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems.Nonlinear Anal., Real World Appl. 6 (2005), 509-530. Zbl 1072.92058, MR 2129561
Reference: [12] Wang, Y.-M.: Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays.J. Math. Anal. Appl. 328 (2007), 137-150. Zbl 1112.35106, MR 2285539, 10.1016/j.jmaa.2006.05.020
Reference: [13] Wang, W., Takeuchi, Y., Saito, Y., Nakaoka, S.: Prey-predator system with parental care for predators.J. Theoret. Biol. 241 (2006), 451-458. MR 2254918, 10.1016/j.jtbi.2005.12.008
Reference: [14] Wu, J.: Theory and Applications of Partial Functional Differential Equations.Applied Mathematical Sciences 119 Springer, New York (1996). Zbl 0870.35116, 10.1007/978-1-4612-4050-1
.

Files

Files Size Format View
AplMat_59-2014-2_7.pdf 402.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo