Title:
|
Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes (English) |
Author:
|
Tian, Yanling |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
217-240 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification of the model. (English) |
Keyword:
|
delayed diffusive predator-prey model |
Keyword:
|
modified Leslie-Gower scheme |
Keyword:
|
Holling-type II scheme |
Keyword:
|
persistence |
Keyword:
|
stability |
Keyword:
|
eigenvalue |
Keyword:
|
monotonous iterative sequence |
MSC:
|
35B25 |
MSC:
|
35K51 |
MSC:
|
35K55 |
MSC:
|
92C40 |
MSC:
|
92D25 |
idZBL:
|
Zbl 06362223 |
idMR:
|
MR3183474 |
DOI:
|
10.1007/s10492-014-0051-9 |
. |
Date available:
|
2014-03-20T08:24:21Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143631 |
. |
Reference:
|
[1] Aziz-Alaoui, M. A., Okiye, M. Daher: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes.Appl. Math. Lett. 16 (2003), 1069-1075. MR 2013074, 10.1016/S0893-9659(03)90096-6 |
Reference:
|
[2] Chen, B., Wang, M.: Qualitative analysis for a diffusive predator-prey model.Comput. Math. Appl. 55 (2008), 339-355. Zbl 1155.35390, MR 2384151, 10.1016/j.camwa.2007.03.020 |
Reference:
|
[3] Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge.J. Differ. Equations 231 (2006), 534-550. MR 2287896, 10.1016/j.jde.2006.08.001 |
Reference:
|
[4] Lindström, T.: Global stability of a model for competing predators: An extension of the Ardito & Ricciardi Lyapunov function.Nonlinear Anal., Theory Methods Appl. 39 (2000), 793-805. Zbl 0945.34037, MR 1733130 |
Reference:
|
[5] Murray, J. D.: Mathematical Biology, Vol. 1: An Introduction. 3rd ed.Interdisciplinary Applied Mathematics 17 Springer, New York (2002). Zbl 1006.92001, MR 1908418 |
Reference:
|
[6] Murray, J. D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. 3rd revised ed.Interdisciplinary Applied Mathematics 18 Springer, New York (2003). Zbl 1006.92002, MR 1952568 |
Reference:
|
[7] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay.Nonlinear Anal., Real World Appl. 7 (2006), 1104-1118. Zbl 1104.92065, MR 2260902 |
Reference:
|
[8] Pao, C. V.: Dynamics of nonlinear parabolic systems with time delays.J. Math. Anal. Appl. 198 (1996), 751-779. Zbl 0860.35138, MR 1377823, 10.1006/jmaa.1996.0111 |
Reference:
|
[9] Ryu, K., Ahn, I.: Positive solutions for ratio-dependent predator-prey interaction systems.J. Differ. Equations 218 (2005), 117-135. MR 2174969, 10.1016/j.jde.2005.06.020 |
Reference:
|
[10] Tian, Y., Weng, P.: Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes.Acta Appl. Math. 114 (2011), 173-192. Zbl 1216.35159, MR 2794080, 10.1007/s10440-011-9607-9 |
Reference:
|
[11] Upadhyay, R. K., Iyengar, S. R. K.: Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems.Nonlinear Anal., Real World Appl. 6 (2005), 509-530. Zbl 1072.92058, MR 2129561 |
Reference:
|
[12] Wang, Y.-M.: Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays.J. Math. Anal. Appl. 328 (2007), 137-150. Zbl 1112.35106, MR 2285539, 10.1016/j.jmaa.2006.05.020 |
Reference:
|
[13] Wang, W., Takeuchi, Y., Saito, Y., Nakaoka, S.: Prey-predator system with parental care for predators.J. Theoret. Biol. 241 (2006), 451-458. MR 2254918, 10.1016/j.jtbi.2005.12.008 |
Reference:
|
[14] Wu, J.: Theory and Applications of Partial Functional Differential Equations.Applied Mathematical Sciences 119 Springer, New York (1996). Zbl 0870.35116, 10.1007/978-1-4612-4050-1 |
. |