Previous |  Up |  Next

Article

Title: Stability of vibrations for some Kirchhoff equation with dissipation (English)
Author: Nandi, Prasanta Kumar
Author: Gorain, Ganesh Chandra
Author: Kar, Samarjit
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 2
Year: 2014
Pages: 205-215
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval $[0,T]$ with a tolerance level $\gamma $. The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force $f$. After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant. (English)
Keyword: Kirchhoff equation
Keyword: dissipation
Keyword: vibration
Keyword: stabilization
Keyword: energy decay estimate
MSC: 35B35
MSC: 35L70
MSC: 37L15
MSC: 45K05
idZBL: Zbl 06362222
idMR: MR3183473
DOI: 10.1007/s10492-014-0050-x
.
Date available: 2014-03-20T08:23:16Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143630
.
Reference: [1] Aassila, M., Benaissa, A.: Global existence and asymptotic behavior of solutions of mildly degenerate Kirchhoff equations with nonlinear dissipative term.Funkc. Ekvacioj, Ser. Int. 44 (2001), 309-333 French. Zbl 1145.35432, MR 1865394
Reference: [2] Autuori, G., Pucci, P.: Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces.Complex Var. Elliptic Equ. 56 (2011), 715-753. Zbl 1230.35018, MR 2832211
Reference: [3] Autuori, G., Pucci, P.: Local asymptotic stability for polyharmonic Kirchhoff systems.Appl. Anal. 90 (2011), 493-514. Zbl 1223.35051, MR 2780908, 10.1080/00036811.2010.483433
Reference: [4] Autuori, G., Pucci, P., Salvatori, M. C.: Asymptotic stability for anisotropic Kirchhoff systems.J. Math. Anal. Appl. 352 (2009), 149-165. Zbl 1175.35013, MR 2499894, 10.1016/j.jmaa.2008.04.066
Reference: [5] Autuori, G., Pucci, P., Salvatori, M. C.: Asymptotic stability for nonlinear Kirchhoff systems.Nonlinear Anal., Real World Appl. 10 (2009), 889-909. Zbl 1167.35314, MR 2474268, 10.1016/j.nonrwa.2007.11.011
Reference: [6] D'Ancona, P., Spagnolo, S.: Nonlinear perturbations of the Kirchhoff equation.Commun. Pure Appl. Math. 47 (1994), 1005-1029. Zbl 0807.35093, MR 1283880, 10.1002/cpa.3160470705
Reference: [7] Gorain, G. C.: Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in $R^n$.J. Math. Anal. Appl. 319 (2006), 635-650. MR 2227928, 10.1016/j.jmaa.2005.06.031
Reference: [8] Gorain, G. C.: Exponential energy decay estimates for the solutions of $n$-dimensional Kirchhoff type wave equation.Appl. Math. Comput. 177 (2006), 235-242. Zbl 1098.74024, MR 2234515, 10.1016/j.amc.2005.11.003
Reference: [9] Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation.J. Math. Pures Appl., IX. Sér. 69 (1990), 33-54. Zbl 0636.93064, MR 1054123
Reference: [10] Lasiecka, I., Ong, J.: Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation.Commun. Partial Differ. Equations 24 (1999), 2069-2107. Zbl 0936.35031, MR 1720766, 10.1080/03605309908821495
Reference: [11] Menzala, G. P.: On classical solutions of a quasilinear hyperbolic equation.Nonlinear Anal., Theory Methods Appl. 3 (1979), 613-627. Zbl 0419.35062, MR 0541872, 10.1016/0362-546X(79)90090-7
Reference: [12] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives.Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). Zbl 0744.26011, MR 1190927
Reference: [13] Nandi, P. K., Gorain, G. C., Kar, S.: Uniform exponential stabilization for flexural vibrations of a solar panel.Appl. Math. (Irvine) 2 (2011), 661-665. MR 2910175, 10.4236/am.2011.26087
Reference: [14] Narasimha, R.: Non-linear vibration of an elastic string.J. Sound Vib. 8 (1968), 134-146. Zbl 0164.26701, 10.1016/0022-460X(68)90200-9
Reference: [15] Nayfeh, A. H., Mook, D. T.: Nonlinear Oscillations.Pure and Applied Mathematics. A Wiley-Interscience Publication John Wiley & Sons, New York (1979). Zbl 0418.70001, MR 0549322
Reference: [16] Newman, W. G.: Global solution of a nonlinear string equation.J. Math. Anal. Appl. 192 (1995), 689-704. Zbl 0837.35095, MR 1336472, 10.1006/jmaa.1995.1198
Reference: [17] Nishihara, K.: On a global solution of some quasilinear hyperbolic equation.Tokyo J. Math. 7 (1984), 437-459. Zbl 0586.35059, MR 0776949, 10.3836/tjm/1270151737
Reference: [18] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms.Funkc. Ekvacioj, Ser. Int. 33 (1990), 151-159. Zbl 0715.35053, MR 1065473
Reference: [19] Ono, K.: Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings.J. Differ. Equations 137 (1997), 273-301. Zbl 0879.35110, MR 1456598, 10.1006/jdeq.1997.3263
Reference: [20] Ono, K., Nishihara, K.: On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation.Adv. Math. Sci. Appl. 5 (1995), 457-476. Zbl 0842.45005, MR 1361000
Reference: [21] Shahruz, S. M.: Bounded-input bounded-output stability of a damped nonlinear string.IEEE Trans. Autom. Control 41 (1996), 1179-1182. Zbl 0863.93076, MR 1407204, 10.1109/9.533679
Reference: [22] Yamazaki, T.: Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three.Math. Methods Appl. Sci. 27 (2004), 1893-1916. Zbl 1072.35559, MR 2092828, 10.1002/mma.530
Reference: [23] Yamazaki, T.: Global solvability for the Kirchhoff equations in exterior domains of dimension three.J. Differ. Equations 210 (2005), 290-316. Zbl 1062.35045, MR 2119986, 10.1016/j.jde.2004.10.012
Reference: [24] Ye, Y.: On the exponential decay of solutions for some Kirchhoff-type modelling equations with strong dissipation.Applied Mathematics 1 (2010), 529-533. 10.4236/am.2010.16070
.

Files

Files Size Format View
AplMat_59-2014-2_6.pdf 241.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo