Previous |  Up |  Next

Article

Title: Necessary conditions for the $L^{p}$-convergence $(0<p<1)$ of single and double trigonometric series (English)
Author: Krasniqi, Xhevat Z.
Author: Kórus, Péter
Author: Móricz, Ferenc
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 1
Year: 2014
Pages: 75-88
Summary lang: English
.
Category: math
.
Summary: We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the $L^{p}$-metric, where $0<p<1$. The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in $H^{p}$ and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the $L^{p}$-metric, where $0<p<1$. (English)
Keyword: trigonometric series
Keyword: Hardy-Littlewood inequality for functions in $H^{p}$
Keyword: Bernstein-Zygmund inequalities for the derivative of trigonometric polynomials in $L^{p}$-metric for $0<p<1$
Keyword: necessary conditions for the convergence in $L^{p}$-metric
MSC: 42A16
MSC: 42A20
MSC: 42A32
MSC: 42B05
MSC: 42B30
MSC: 42B99
idZBL: Zbl 06362243
idMR: MR3231430
DOI: 10.21136/MB.2014.143637
.
Date available: 2014-03-20T08:30:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143637
.
Reference: [1] Arestov, V.: On integral inequalities for trigonometric polynomials and their derivatives.Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 (1981), 3-22. MR 0607574, 10.1070/IM1982v018n01ABEH001375
Reference: [2] Belov, A. S.: On conditions of the average convergence (upper boundedness) of trigonometric series.J. Math. Sci., New York 155 5-17 (2008), translation from Sovrem. Mat., Fundam. Napravl. 25 (2007), 8-20. MR 2342534, 10.1007/s10958-008-9204-2
Reference: [3] Bustamante, J.: Algebraic Approximation: A Guide to Past and Current Solutions.Frontiers in Mathematics Birkhäuser, Basel (2012). Zbl 1248.41012, MR 3014919
Reference: [4] Hardy, G. H., Littlewood, J. E.: Some new properties of Fourier constants.Math. Ann. 97 (1927), 159-209. MR 1512359, 10.1007/BF01447865
Reference: [5] Krasniqi, X. Z.: On the convergence (upper boundness) of trigonometric series.Math. Commun. 14 (2009), 245-254. Zbl 1204.42006, MR 2743173
Reference: [6] Móricz, F.: Necessary conditions for $L^1$-convergence of double Fourier series.J. Math. Anal. Appl. 363 (2010), 559-568. Zbl 1182.42009, MR 2564875, 10.1016/j.jmaa.2009.09.030
Reference: [7] Runovski, K., Schmeisser, H.-J.: On some extensions of Bernstein's inequalities for trigonometric polynomials.Funct. Approx. Comment. Math. 29 (2001), 125-142. MR 2135603, 10.7169/facm/1538186723
.

Files

Files Size Format View
MathBohem_139-2014-1_4.pdf 254.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo