Previous |  Up |  Next

Article

Title: Natural transformations of connections on the first principal prolongation (English)
Author: Vondra, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 1
Year: 2014
Pages: 21-25
Summary lang: English
.
Category: math
.
Summary: We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. We determine all natural transformations of the connection bundle of the first order principal prolongation of principal bundle $PE$ into itself. (English)
Keyword: natural bundle
Keyword: gauge-natural bundle
Keyword: natural operator
Keyword: principal bundle
Keyword: principal connection
MSC: 53C05
MSC: 58A32
idZBL: Zbl 06391562
idMR: MR3194765
DOI: 10.5817/AM2014-1-21
.
Date available: 2014-04-04T07:16:21Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143716
.
Reference: [1] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories.Kluwer Academic Publishers, Dordrecht/Boston/London, 2003. Zbl 1138.81303, MR 2039451
Reference: [2] Janyška, J.: Reduction theorems for general linear connections.Differential Geom. Appl. 20 (2) (2004), 177–196. Zbl 1108.53016, MR 2038554, 10.1016/j.difgeo.2003.10.006
Reference: [3] Janyška, J.: Higher order Utiyama invariant interaction.Rep. Math. Phys. 59 (1) (2007), 63–81. MR 2308635, 10.1016/S0034-4877(07)80005-X
Reference: [4] Janyška, J., Vondra, J.: Natural principal connections on the principal gauge prolongation of a principal bundle.Rep. Math. Phys. 64 (3) (2009), 395–415. Zbl 1195.53040, MR 2602937, 10.1016/S0034-4877(10)00002-9
Reference: [5] Kolář, I.: Some natural operators in differential geometry.Differential Geometry and Its Aplications (Brno, 1986), Math. Appl. (East European Ser.), Reidel, Dordrecht, 1987, pp. 91–110. MR 0923346
Reference: [6] Kolář, I.: Connections on higher order frame bundles and their gauge analogies.Variations, Geometry and Physics, Nova Science Publishers, 2008, pp. 199–223. MR 2523439
Reference: [7] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer–Verlag, 1993. MR 1202431
Reference: [8] Krupka, D., Janyška, J.: Lectures on Differential Invariants.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Brno, 1990. MR 1108622
Reference: [9] Vondra, J.: Classification of principal connections naturally induced on $W^2PE$.Arch. Math. (Brno) 44 (5) (2008), 535–547. Zbl 1212.53040, MR 2501583
.

Files

Files Size Format View
ArchMathRetro_050-2014-1_2.pdf 427.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo