Title:
|
Lefschetz coincidence numbers of solvmanifolds with Mostow conditions (English) |
Author:
|
Kasuya, Hisashi |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
27-37 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case. (English) |
Keyword:
|
de Rham cohomology |
Keyword:
|
Lefschetz coincidence number |
Keyword:
|
solvmanifold |
MSC:
|
17B55 |
MSC:
|
22E25 |
MSC:
|
53C30 |
MSC:
|
54H25 |
MSC:
|
55M20 |
idZBL:
|
Zbl 06391563 |
idMR:
|
MR3194766 |
DOI:
|
10.5817/AM2014-1-27 |
. |
Date available:
|
2014-04-04T07:40:08Z |
Last updated:
|
2015-03-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143717 |
. |
Reference:
|
[1] Auslander, L.: An exposition of the structure of solvmanifolds. I. Algebraic theory.Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. Zbl 0265.22016, MR 0486307, 10.1090/S0002-9904-1973-13134-9 |
Reference:
|
[2] Baues, O., Klopsch, B.: Deformations and rigidity of lattices in solvable Lie groups.J. Topol. (online published). MR 3145141 |
Reference:
|
[3] Console, S., Fino, A.: On the de Rham cohomology of solvmanifolds.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–811. Zbl 1242.53055, MR 2932894 |
Reference:
|
[4] Ha, K.Y., Lee, J.B., Penninckx, P.: Anosov theorem for coincidences on special solvmanifolds of type (R).Proc. Amer. Math. Soc. 139 (2011), no. 6, 2239–2248. MR 2775401 |
Reference:
|
[5] Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles.J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. Zbl 0099.18003, MR 0124918 |
Reference:
|
[6] Jezierski, J., Marzantowicz, W.: Homotopy methods in topological fixed and periodic points theory.Topol. Fixed Point Theory Appl., vol. 3, Springer, Dordrecht, 2006. Zbl 1085.55001, MR 2189944 |
Reference:
|
[7] Kasuya, H.: The Frolicher spectral sequences of certain solvmanifolds.J. Geom. Anal. (2013), Online First. MR 3299283, 10.1007/s12220-013-9429-2 |
Reference:
|
[8] Kasuya, H.: Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds.Bull. Lond. Math. Soc. 45 (2013), no. 1, 15–26. Zbl 1262.53061, MR 3033950, 10.1112/blms/bds057 |
Reference:
|
[9] McCleary, J.: A user’s guide to spectral sequences.second ed., Cambridge Studies in Advanced Mathematics, Cambridge, 2001. Zbl 0959.55001, MR 1793722 |
Reference:
|
[10] McCord, C. K.: Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds.Topology Appl. 75 (1997), no. 1, 81–92. Zbl 1001.55004, MR 1425386, 10.1016/S0166-8641(96)00081-8 |
Reference:
|
[11] McCord, C.K., : Nielsen numbers and Lefschetz numbers on solvmanifolds.Pacific J. Math. 147 (1991), no. 1, 153–164. Zbl 0666.55002, MR 1081679, 10.2140/pjm.1991.147.153 |
Reference:
|
[12] Mostow, G.D.: Cohomology of topological groups and solvmanifolds.Ann. of Math. (2) 73 (1961), 20–48. Zbl 0103.26501, MR 0125179 |
Reference:
|
[13] Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups.Ann. of Math. (2) 59 (1954), 531–538. Zbl 0058.02202, MR 0064057, 10.2307/1969716 |
Reference:
|
[14] Onishchik, A.L., Vinberg, E.B.: Lie groups and Lie algebras II.Springer, 2000. Zbl 0932.00011, MR 1756406 |
Reference:
|
[15] Raghnathan, M.S.: Discrete subgroups of Lie Groups.Springer-Verlag, New York, 1972. MR 0507234 |
Reference:
|
[16] Steenrod, N.: The Topology of Fibre Bundles.Princeton University Press, 1951. Zbl 0054.07103, MR 0039258 |
Reference:
|
[17] Witte, D.: Superrigidity of lattices in solvable Lie groups.Invent. Math. 122 (1995), no. 1, 147–193. Zbl 0844.22015, MR 1354957, 10.1007/BF01231442 |
Reference:
|
[18] Wong, P.: Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds.J. Reine Angew. Math. 524 (2000), 185–204. Zbl 0962.55002, MR 1770607 |
. |