[1] Bernal, M., Guerra, T. M., Kruszewski, A.:
A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models. Fuzzy Sets and Systems 160 (2009), 19, 2776-2795.
DOI 10.1016/j.fss.2009.02.005 |
MR 2573358 |
Zbl 1176.93042
[2] Ding, B. C., Sun, H. X., Yang, P.:
Further studies on LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in Takagi-Sugeno form. Automatica 42 (2006), 3, 503-508.
DOI 10.1016/j.automatica.2005.11.005 |
MR 2195255
[3] Fang, C. H., Liu, Y. S., Kau, S. W., Hong, L., Lee, C. H.:
A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Systems 14 (2006), 3, 386-397.
DOI 10.1109/TFUZZ.2006.876331
[4] Feng, G.:
Controller synthesis of fuzzy dynamical systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 11 (2003), 5, 605-612.
DOI 10.1109/TFUZZ.2003.817837
[5] Johansson, M., Rantzer, A., Arzen, K.:
Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems 7 (1999), 6, 713-722.
DOI 10.1109/91.811241
[6] Kim, E., Lee, H.:
New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Systems 8 (2000), 5, 523-534.
DOI 10.1109/91.873576
[7] Lam, H. K., Leung, F. H. F.:
Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 35 (2005), 6, 1322-1325.
DOI 10.1109/TSMCB.2005.850181
[8] Lam, H. K., Leung, F. H. F.:
LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 137 (2007), 5, 1396-1406.
DOI 10.1109/TSMCB.2007.900733
[9] Lam, H. K., Leung, F. H. F.:
Stability Analysis of Fuzzy-Model-Based Control Systems. Studies on Fuzziness and Soft Computing. Springer, 2010.
Zbl 1220.93002
[10] Lam, H. K., Narimani, M., Seneviratne, L. D.: LMI-based stability conditions for interval type-2 fuzzy-model-based control systems. In: 2011 IEEE International Conference on Fuzzy Systems, Taipei, pp. 298-303.
[11] Lam, H. K., Seneviratne, L. D.:
Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 38 (2008), 3, 617-628.
DOI 10.1109/TSMCB.2008.915530
[12] Lee, D. H., Park, J. B., Joo, Y. H.:
A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 19 (2011), 4, 785-791.
DOI 10.1109/TFUZZ.2011.2142315
[13] Liu, X. D., Zhang, Q. L.:
New approaches to $H_{\infty}$ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 38 (2003), 9, 1571-1582.
MR 2143464 |
Zbl 1029.93042
[14] Montagner, V. F., Oliveira, R. C. L. F., Peres, P. L. D.:
Convergent LMI relaxtions for quadratic stabilizability and $H_{\infty}$ control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 17 (2009), 4, 863-873.
DOI 10.1109/TFUZZ.2009.2016552
[15] Mozelli, L. A., Palhares, R. M., Souza, F. O., Mendes, E. M. A. M.:
Reducing conservativeness in recent stability conditions of T-S fuzzy systems. Automatica 45 (2009),6, 1580-1583.
DOI 10.1016/j.automatica.2009.02.023 |
MR 2879468
[16] Sala, A., Arino, C.:
Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Poly's theorem. Fuzzy Sets and Systems 158 (2007), 24, 2671-2686.
MR 2374213
[17] Tanaka, K., Hori, T., Wang, H. O.:
A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Systems 11 (2003), 4, 582-589.
DOI 10.1109/TFUZZ.2003.814861
[18] Tanaka, K., Hori, T., Wang, H. O.:
A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions. IEEE Trans. Fuzzy Systems 15 (2007), 3, 333-341.
DOI 10.1109/TFUZZ.2006.880005
[20] Teixeira, M. C. M., Assuncao, E., Vellar, R. G.:
On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Systems 11 (2003), 5, 613-623.
DOI 10.1109/TFUZZ.2003.817840
[21] Tuan, H. D., Apkarian, P.:
Parameterized linear matrix inequalities in fuzzy control system design. IEEE Trans. Fuzzy Systems 9 (2001), 2, 324-332.
DOI 10.1109/91.919253 |
MR 1677129
[22] Wang, W. J., Chen, Y. J., Sun, C. H.:
Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 37 (2007), 3, 551-559.
DOI 10.1109/TSMCB.2006.887434
[23] Wei, Z. C., Wang, Z.:
Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374.
MR 3085401 |
Zbl 1276.34043
[25] Zhang, H. G., Xie, X. P.:
Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach. IEEE Trans. Fuzzy Systems 19 (2011), 3, 478-492.
DOI 10.1109/TFUZZ.2011.2114887