Previous |  Up |  Next

Article

Keywords:
interval type-2 fuzzy set; interval type-2 T-S fuzzy system; linear matrix inequalities; stability analysis
Summary:
This paper proposes new stability conditions for interval type-2 fuzzy-model-based (FMB) control systems. The type-1 T-S fuzzy model has been widely studied because it can represent a wide class of nonlinear systems. Many favorable results for type-1 T-S fuzzy model have been reported. However, most of conclusions for type-1 T-S fuzzy model can not be applied to nonlinear systems subject to parameter uncertainties. In fact, Most of the practical applications are subject to parameters uncertainties. To address above problem, an interval type-2 T-S fuzzy model has been proposed to approximate nonlinear systems subject to parameter uncertainties, and stability conditions for interval type-2 FMB control systems have also been presented in the form of linear matrix inequalities (LMIs). The aim of this paper is to relax the existing stability conditions. The new stability conditions in terms of LMIs are derived to guarantee the stability of interval type-2 FMB control systems. The theoretical poof is given to show the proposed conditions reduce the conservativeness in stability analysis. Several numerical examples are also provided to illustrate the effectiveness of the proposed conditions.
References:
[1] Bernal, M., Guerra, T. M., Kruszewski, A.: A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models. Fuzzy Sets and Systems 160 (2009), 19, 2776-2795. DOI 10.1016/j.fss.2009.02.005 | MR 2573358 | Zbl 1176.93042
[2] Ding, B. C., Sun, H. X., Yang, P.: Further studies on LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in Takagi-Sugeno form. Automatica 42 (2006), 3, 503-508. DOI 10.1016/j.automatica.2005.11.005 | MR 2195255
[3] Fang, C. H., Liu, Y. S., Kau, S. W., Hong, L., Lee, C. H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Systems 14 (2006), 3, 386-397. DOI 10.1109/TFUZZ.2006.876331
[4] Feng, G.: Controller synthesis of fuzzy dynamical systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 11 (2003), 5, 605-612. DOI 10.1109/TFUZZ.2003.817837
[5] Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems 7 (1999), 6, 713-722. DOI 10.1109/91.811241
[6] Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Systems 8 (2000), 5, 523-534. DOI 10.1109/91.873576
[7] Lam, H. K., Leung, F. H. F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 35 (2005), 6, 1322-1325. DOI 10.1109/TSMCB.2005.850181
[8] Lam, H. K., Leung, F. H. F.: LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 137 (2007), 5, 1396-1406. DOI 10.1109/TSMCB.2007.900733
[9] Lam, H. K., Leung, F. H. F.: Stability Analysis of Fuzzy-Model-Based Control Systems. Studies on Fuzziness and Soft Computing. Springer, 2010. Zbl 1220.93002
[10] Lam, H. K., Narimani, M., Seneviratne, L. D.: LMI-based stability conditions for interval type-2 fuzzy-model-based control systems. In: 2011 IEEE International Conference on Fuzzy Systems, Taipei, pp. 298-303.
[11] Lam, H. K., Seneviratne, L. D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 38 (2008), 3, 617-628. DOI 10.1109/TSMCB.2008.915530
[12] Lee, D. H., Park, J. B., Joo, Y. H.: A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 19 (2011), 4, 785-791. DOI 10.1109/TFUZZ.2011.2142315
[13] Liu, X. D., Zhang, Q. L.: New approaches to $H_{\infty}$ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 38 (2003), 9, 1571-1582. MR 2143464 | Zbl 1029.93042
[14] Montagner, V. F., Oliveira, R. C. L. F., Peres, P. L. D.: Convergent LMI relaxtions for quadratic stabilizability and $H_{\infty}$ control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 17 (2009), 4, 863-873. DOI 10.1109/TFUZZ.2009.2016552
[15] Mozelli, L. A., Palhares, R. M., Souza, F. O., Mendes, E. M. A. M.: Reducing conservativeness in recent stability conditions of T-S fuzzy systems. Automatica 45 (2009),6, 1580-1583. DOI 10.1016/j.automatica.2009.02.023 | MR 2879468
[16] Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Poly's theorem. Fuzzy Sets and Systems 158 (2007), 24, 2671-2686. MR 2374213
[17] Tanaka, K., Hori, T., Wang, H. O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Systems 11 (2003), 4, 582-589. DOI 10.1109/TFUZZ.2003.814861
[18] Tanaka, K., Hori, T., Wang, H. O.: A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions. IEEE Trans. Fuzzy Systems 15 (2007), 3, 333-341. DOI 10.1109/TFUZZ.2006.880005
[19] Tanaka, K., Sugen, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems 42 (1992), 2, 135-156. DOI 10.1016/0165-0114(92)90113-I | MR 1149415
[20] Teixeira, M. C. M., Assuncao, E., Vellar, R. G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Systems 11 (2003), 5, 613-623. DOI 10.1109/TFUZZ.2003.817840
[21] Tuan, H. D., Apkarian, P.: Parameterized linear matrix inequalities in fuzzy control system design. IEEE Trans. Fuzzy Systems 9 (2001), 2, 324-332. DOI 10.1109/91.919253 | MR 1677129
[22] Wang, W. J., Chen, Y. J., Sun, C. H.: Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 37 (2007), 3, 551-559. DOI 10.1109/TSMCB.2006.887434
[23] Wei, Z. C., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374. MR 3085401 | Zbl 1276.34043
[24] Wei, Z., Yang, Q.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 27 (2010), 1, 422-429. DOI 10.1016/j.amc.2010.05.035 | MR 2672602 | Zbl 1200.65102
[25] Zhang, H. G., Xie, X. P.: Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach. IEEE Trans. Fuzzy Systems 19 (2011), 3, 478-492. DOI 10.1109/TFUZZ.2011.2114887
Partner of
EuDML logo