Previous |  Up |  Next

Article

Title: Relaxed stability conditions for interval type-2 fuzzy-model-based control systems (English)
Author: Zhao, Tao
Author: Xiao, Jian
Author: Ding, Jialin
Author: Deng, Xuesong
Author: Wang, Song
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 1
Year: 2014
Pages: 46-65
Summary lang: English
.
Category: math
.
Summary: This paper proposes new stability conditions for interval type-2 fuzzy-model-based (FMB) control systems. The type-1 T-S fuzzy model has been widely studied because it can represent a wide class of nonlinear systems. Many favorable results for type-1 T-S fuzzy model have been reported. However, most of conclusions for type-1 T-S fuzzy model can not be applied to nonlinear systems subject to parameter uncertainties. In fact, Most of the practical applications are subject to parameters uncertainties. To address above problem, an interval type-2 T-S fuzzy model has been proposed to approximate nonlinear systems subject to parameter uncertainties, and stability conditions for interval type-2 FMB control systems have also been presented in the form of linear matrix inequalities (LMIs). The aim of this paper is to relax the existing stability conditions. The new stability conditions in terms of LMIs are derived to guarantee the stability of interval type-2 FMB control systems. The theoretical poof is given to show the proposed conditions reduce the conservativeness in stability analysis. Several numerical examples are also provided to illustrate the effectiveness of the proposed conditions. (English)
Keyword: interval type-2 fuzzy set
Keyword: interval type-2 T-S fuzzy system
Keyword: linear matrix inequalities
Keyword: stability analysis
MSC: 62A10
MSC: 93C42
MSC: 93D20
MSC: 93E12
idZBL: Zbl 1302.93226
idMR: MR3195004
DOI: 10.14736/kyb-2014-1-0046
.
Date available: 2014-05-02T06:46:12Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143763
.
Reference: [1] Bernal, M., Guerra, T. M., Kruszewski, A.: A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models..Fuzzy Sets and Systems 160 (2009), 19, 2776-2795. Zbl 1176.93042, MR 2573358, 10.1016/j.fss.2009.02.005
Reference: [2] Ding, B. C., Sun, H. X., Yang, P.: Further studies on LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in Takagi-Sugeno form..Automatica 42 (2006), 3, 503-508. MR 2195255, 10.1016/j.automatica.2005.11.005
Reference: [3] Fang, C. H., Liu, Y. S., Kau, S. W., Hong, L., Lee, C. H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems..IEEE Trans. Fuzzy Systems 14 (2006), 3, 386-397. 10.1109/TFUZZ.2006.876331
Reference: [4] Feng, G.: Controller synthesis of fuzzy dynamical systems based on piecewise Lyapunov functions..IEEE Trans. Fuzzy Systems 11 (2003), 5, 605-612. 10.1109/TFUZZ.2003.817837
Reference: [5] Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems..IEEE Trans. Fuzzy Systems 7 (1999), 6, 713-722. 10.1109/91.811241
Reference: [6] Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems..IEEE Trans. Fuzzy Systems 8 (2000), 5, 523-534. 10.1109/91.873576
Reference: [7] Lam, H. K., Leung, F. H. F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership..IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 35 (2005), 6, 1322-1325. 10.1109/TSMCB.2005.850181
Reference: [8] Lam, H. K., Leung, F. H. F.: LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form..IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 137 (2007), 5, 1396-1406. 10.1109/TSMCB.2007.900733
Reference: [9] Lam, H. K., Leung, F. H. F.: Stability Analysis of Fuzzy-Model-Based Control Systems..Studies on Fuzziness and Soft Computing. Springer, 2010. Zbl 1220.93002
Reference: [10] Lam, H. K., Narimani, M., Seneviratne, L. D.: LMI-based stability conditions for interval type-2 fuzzy-model-based control systems..In: 2011 IEEE International Conference on Fuzzy Systems, Taipei, pp. 298-303.
Reference: [11] Lam, H. K., Seneviratne, L. D.: Stability analysis of interval type-2 fuzzy-model-based control systems..IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 38 (2008), 3, 617-628. 10.1109/TSMCB.2008.915530
Reference: [12] Lee, D. H., Park, J. B., Joo, Y. H.: A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems..IEEE Trans. Fuzzy Systems 19 (2011), 4, 785-791. 10.1109/TFUZZ.2011.2142315
Reference: [13] Liu, X. D., Zhang, Q. L.: New approaches to $H_{\infty}$ controller designs based on fuzzy observers for T-S fuzzy systems via LMI..Automatica 38 (2003), 9, 1571-1582. Zbl 1029.93042, MR 2143464
Reference: [14] Montagner, V. F., Oliveira, R. C. L. F., Peres, P. L. D.: Convergent LMI relaxtions for quadratic stabilizability and $H_{\infty}$ control of Takagi-Sugeno fuzzy systems..IEEE Trans. Fuzzy Systems 17 (2009), 4, 863-873. 10.1109/TFUZZ.2009.2016552
Reference: [15] Mozelli, L. A., Palhares, R. M., Souza, F. O., Mendes, E. M. A. M.: Reducing conservativeness in recent stability conditions of T-S fuzzy systems..Automatica 45 (2009),6, 1580-1583. MR 2879468, 10.1016/j.automatica.2009.02.023
Reference: [16] Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Poly's theorem..Fuzzy Sets and Systems 158 (2007), 24, 2671-2686. MR 2374213
Reference: [17] Tanaka, K., Hori, T., Wang, H. O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems..IEEE Trans. Fuzzy Systems 11 (2003), 4, 582-589. 10.1109/TFUZZ.2003.814861
Reference: [18] Tanaka, K., Hori, T., Wang, H. O.: A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions..IEEE Trans. Fuzzy Systems 15 (2007), 3, 333-341. 10.1109/TFUZZ.2006.880005
Reference: [19] Tanaka, K., Sugen, M.: Stability analysis and design of fuzzy control systems..Fuzzy Sets and Systems 42 (1992), 2, 135-156. MR 1149415, 10.1016/0165-0114(92)90113-I
Reference: [20] Teixeira, M. C. M., Assuncao, E., Vellar, R. G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers..IEEE Trans. Fuzzy Systems 11 (2003), 5, 613-623. 10.1109/TFUZZ.2003.817840
Reference: [21] Tuan, H. D., Apkarian, P.: Parameterized linear matrix inequalities in fuzzy control system design..IEEE Trans. Fuzzy Systems 9 (2001), 2, 324-332. MR 1677129, 10.1109/91.919253
Reference: [22] Wang, W. J., Chen, Y. J., Sun, C. H.: Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function..IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics 37 (2007), 3, 551-559. 10.1109/TSMCB.2006.887434
Reference: [23] Wei, Z. C., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium..Kybernetika 49 (2013), 2, 359-374. Zbl 1276.34043, MR 3085401
Reference: [24] Wei, Z., Yang, Q.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci..Appl. Math. Comput. 27 (2010), 1, 422-429. Zbl 1200.65102, MR 2672602, 10.1016/j.amc.2010.05.035
Reference: [25] Zhang, H. G., Xie, X. P.: Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach..IEEE Trans. Fuzzy Systems 19 (2011), 3, 478-492. 10.1109/TFUZZ.2011.2114887
.

Files

Files Size Format View
Kybernetika_50-2014-1_6.pdf 370.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo