Previous |  Up |  Next

Article

Title: A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems (English)
Author: Linß, Torsten
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 241-256
Summary lang: English
.
Category: math
.
Summary: FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results. (English)
Keyword: reaction-diffusion problem
Keyword: singular perturbation
Keyword: mesh adaptation
MSC: 65L10
MSC: 65L11
MSC: 65L50
MSC: 65L60
MSC: 65L70
idZBL: Zbl 06362224
idMR: MR3232628
DOI: 10.1007/s10492-014-0052-8
.
Date available: 2014-05-20T07:29:04Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143769
.
Reference: [1] Bakhvalov, N. S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer.Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841-859 Russian. MR 0255066
Reference: [2] Chadha, N. M., Kopteva, N.: A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem.IMA J. Numer. Anal. 31 (2011), 188-211. Zbl 1211.65099, MR 2755942, 10.1093/imanum/drp033
Reference: [3] Boor, C. de: Good approximation by splines with variable knots.Spline Functions and Approximation Theory. Proceedings of the symposium held at the University of Alberta, Edmonton, 1972 A. Meir et al. International Series of Numerical Mathematics 21 Birkhäuser, Basel (1973), 57-72. Zbl 0255.41007, MR 0403169
Reference: [4] Demlow, A., Lakkis, O., Makridakis, C.: A posteriori error estimates in the maximum norm for parabolic problems.SIAM J. Numer. Anal. 47 2157-2176 (2009). Zbl 1196.65153, MR 2519598, 10.1137/070708792
Reference: [5] Kopteva, N.: Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction-diffusion problem.IMA J. Numer. Anal. 27 576-592 (2007). Zbl 1149.65066, MR 2337581, 10.1093/imanum/drl020
Reference: [6] Kopteva, N., Linß, T.: Maximum norm a posteriori error estimation for parabolic problems using elliptic reconstructions.SIAM J. Numer. Anal. 51 (2013), 1494-1524. Zbl 1281.65121, MR 3056758, 10.1137/110830563
Reference: [7] Kopteva, N., Linß, T.: Numerical study of maximum norm a posteriori error estimates for singularly perturbed parabolic problems.Numerical Analysis and its Applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, 2012. Revised selected papers I. Dimov et al. Lecture Notes in Computer Science 8236 Springer, Berlin (2013), 50-61. MR 3149972, 10.1007/978-3-642-41515-9_5
Reference: [8] Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem.SIAM J. Numer. Anal. 39 (2001), 1446-1467. Zbl 1012.65076, MR 1870850, 10.1137/S003614290138471X
Reference: [9] Kunert, G.: A note on the energy norm for a singularly perturbed model problem.Computing 69 (2002), 265-272. Zbl 1239.65055, MR 1954563, 10.1007/s00607-002-1457-x
Reference: [10] Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems.Lecture Notes in Mathematics 1985 Springer, Berlin (2010). Zbl 1202.65120, MR 2583792
Reference: [11] Linß, T.: Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem.BIT 47 (2007), 379-391. Zbl 1221.65175, MR 2334045, 10.1007/s10543-007-0118-z
Reference: [12] Melenk, J. M.: $hp$-Finite Element Methods for Singular Perturbations.Lecture Notes in Mathematics 1796 Springer, Berlin (2002). Zbl 1021.65055, MR 1939620, 10.1007/b84212
Reference: [13] Nochetto, R. H., Schmidt, A., Siebert, K. G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations.Numer. Math. 104 (2006), 515-538. Zbl 1104.65107, MR 2249676, 10.1007/s00211-006-0027-0
Reference: [14] Roos, H.-G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems.Z. Angew. Math. Mech., in press.
Reference: [15] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems 2nd ed.Springer Series in Computational Mathematics 24 Springer, Berlin (2008). Zbl 1155.65087, MR 2454024
Reference: [16] Shishkin, G. I.: Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations.Russian Academy of Sciences, Ural Section Ekaterinburg (1992), Russian.
.

Files

Files Size Format View
AplMat_59-2014-3_1.pdf 292.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo