Previous |  Up |  Next

Article

Title: A population biological model with a singular nonlinearity (English)
Author: Rasouli, Sayyed Hashem
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 257-264
Summary lang: English
.
Category: math
.
Summary: We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form $$ \begin {cases} -{\rm div}(|x|^{-\alpha p}|\nabla u|^{p-2}\nabla u)=|x|^{-(\alpha +1)p+\beta } \Big (a u^{p-1}-f(u)-\dfrac {c}{u^{\gamma }}\Big ), \quad x\in \Omega ,\\ u=0, \quad x\in \partial \Omega , \end {cases} $$ where $\Omega $ is a bounded smooth domain of ${\mathbb R}^N$ with $0\in \Omega $, $1<p<N$, $0\leq \alpha < {(N-p)}/{p}$, $\gamma \in (0,1)$, and $a$, $\beta $, $c$ and $\lambda $ are positive parameters. Here $f\colon [0,\infty )\to {\mathbb R}$ is a continuous function. This model arises in the studies of population biology of one species with $u$ representing the concentration of the species. We discuss the existence of a positive solution when $f$ satisfies certain additional conditions. We use the method of sub-supersolutions to establish our results. (English)
Keyword: population biology
Keyword: infinite semipositone
Keyword: sub-supersolution
MSC: 35A01
MSC: 35B09
MSC: 35J60
MSC: 35J62
MSC: 35J65
MSC: 35J75
MSC: 92D25
idZBL: Zbl 06362225
idMR: MR3232629
DOI: 10.1007/s10492-014-0053-7
.
Date available: 2014-05-20T07:31:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143771
.
Reference: [1] Atkinson, C., El-Ali, K.: Some boundary value problems for the Bingham model.J. Non-Newtonian Fluid Mech. 41 (1992), 339-363. Zbl 0747.76012, 10.1016/0377-0257(92)87006-W
Reference: [2] Bueno, H., Ercole, G., Ferreira, W., Zumpano, A.: Existence and multiplicity of positive solutions for the $p$-Laplacian with nonlocal coefficient.J. Math. Anal. Appl. 343 (2008), 151-158. Zbl 1141.35029, MR 2409464, 10.1016/j.jmaa.2008.01.001
Reference: [3] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compos. Math. 53 (1984), 259-275. Zbl 0563.46024, MR 0768824
Reference: [4] Cañada, A., Drábek, P., Gámez, J. L.: Existence of positive solutions for some problems with nonlinear diffusion.Trans. Am. Math. Soc. 349 (1997), 4231-4249. Zbl 0884.35039, MR 1422596, 10.1090/S0002-9947-97-01947-8
Reference: [5] Cantrell, R. S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations.Wiley Series in Mathematical and Computational Biology Wiley, Chichester (2003). Zbl 1059.92051, MR 2191264
Reference: [6] Cîrstea, F., Motreanu, D., Rădulescu, V.: Weak solutions of quasilinear problems with nonlinear boundary condition.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 623-636. Zbl 0972.35038, MR 1804861, 10.1016/S0362-546X(99)00224-2
Reference: [7] Drábek, P., Hernández, J.: Existence and uniqueness of positive solutions for some quasilinear elliptic problems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 44 (2001), 189-204. Zbl 0991.35035, MR 1816658, 10.1016/S0362-546X(99)00258-8
Reference: [8] Drábek, P., Krejčí, P., (eds.), P. Takáč: Nonlinear Differential Equations. Proceedings of talks given at the seminar in differential equations, Chvalatice, Czech Republic, June 29--July 3, 1998.Chapman & Hall/CRC Research Notes in Mathematics 404 Chapman & Hall/CRC, Boca Raton (1999). Zbl 0919.00053
Reference: [9] Drábek, P., Rasouli, S. H.: A quasilinear eigenvalue problem with Robin conditions on the non-smooth domain of finite measure.Z. Anal. Anwend. 29 (2010), 469-485. Zbl 1202.35149, MR 2735484, 10.4171/ZAA/1419
Reference: [10] Fang, F., Liu, S.: Nontrivial solutions of superlinear $p$-Laplacian equations.J. Math. Anal. Appl. 351 (2009), 138-146. Zbl 1161.35016, MR 2472927, 10.1016/j.jmaa.2008.09.064
Reference: [11] Lee, E. K., Shivaji, R., Ye, J.: Positive solutions for infinite semipositone problems with falling zeros.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4475-4479. Zbl 1190.35095, MR 2639195, 10.1016/j.na.2010.02.022
Reference: [12] Miyagaki, O. H., Rodrigues, R. S.: On positive solutions for a class of singular quasilinear elliptic systems.J. Math. Anal. Appl. 334 (2007), 818-833. Zbl 1155.35024, MR 2338630, 10.1016/j.jmaa.2007.01.018
Reference: [13] Murray, J. D.: Mathematical Biology, Vol. 1: An Introduction. 3rd ed.Interdisciplinary Applied Mathematics 17 Springer, New York (2002). Zbl 1006.92001, MR 1908418
Reference: [14] Rasouli, S. H., Afrouzi, G. A.: The Nehari manifold for a class of concave-convex elliptic systems involving the $p$-Laplacian and nonlinear boundary condition.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3390-3401. Zbl 1200.35103, MR 2680032, 10.1016/j.na.2010.07.021
Reference: [15] Smoller, J., Wasserman, A.: Global bifurcation of steady-state solutions.J. Differ. Equations 39 (1981), 269-290. Zbl 0425.34028, MR 0607786, 10.1016/0022-0396(81)90077-2
Reference: [16] Xuan, B.: The eigenvalue problem for a singular quasilinear elliptic equation.Electron. J. Differ. Equ. (electronic only) 2004 (2004), Paper No. 16. Zbl 1217.35131, MR 2036200
Reference: [17] Xuan, B.: The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 703-725. Zbl 1130.35061, MR 2149911, 10.1016/j.na.2005.03.095
.

Files

Files Size Format View
AplMat_59-2014-3_2.pdf 238.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo