[3] Du, Q., Zhang, M.: 
A non-overlapping domain decomposition algorithm based on the natural boundary reduction for wave equations in an unbounded domain. Numer. Math., J. Chin. Univ. 13 (2004), 121-132. 
MR 2156269 | 
Zbl 1075.65121 
[4] Feng, K.: 
Finite element method and natural boundary reduction. Proc. Int. Congr. Math., Warszawa 1983, Vol. 2, Z. Ciesielski et al. PWN-Polish Scientific Publishers Warszawa; North-Holland, Amsterdam (1984), 1439-1453. 
MR 0804790 | 
Zbl 0569.65076 
[7] Hlaváček, I., Křížek, M., Malý, J.: 
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189. 
DOI 10.1006/jmaa.1994.1192 | 
MR 1275952 
[9] Liu, D., Yu, D.: 
A FEM-BEM formulation for an exterior quasilinear elliptic problem in the plane. J. Comput. Math. 26 (2008), 378-389. 
MR 2421888 | 
Zbl 1174.65049 
[10] Meddahi, S., González, M., Pérez, P.: 
On a FEM-BEM formulation for an exterior quasilinear problem in the plane. SIAM J. Numer. Anal. 37 (2000), 1820-1837. 
DOI 10.1137/S0036142998335364 | 
MR 1766849 
[12] Yu, D.: 
Domain decomposition methods for unbounded domains. Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995) R. Glowinski et al. Wiley Chichester 125-132 (1997). 
MR 1943455 
[13] Yu, D.: 
Natural Boundary Integral Method and its Applications. Translated from the 1993 Chinese original. Mathematics and its Applications 539 Kluwer Academic Publishers, Dordrecht (2002);  Science Press Beijing, Beijing 
MR 1961132 | 
Zbl 1028.65129 
[14] Zhu, W., Huang, H. Y.: 
Non-overlapping domain decomposition method for an anisotropic elliptic problem in an exterior domain. Chinese J. Numer. Math. Appl. 26 (2004), 87-101. 
MR 2087218