Previous |  Up |  Next

Article

Title: Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem (English)
Author: Liu, Baoqing
Author: Du, Qikui
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 285-301
Summary lang: English
.
Category: math
.
Summary: In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence. Moreover, the convergence rate is obtained in detail for a typical domain. Finally, some numerical examples are presented to illustrate the feasibility of the method. (English)
Keyword: quasilinear elliptic equation
Keyword: domain decomposition method
Keyword: natural integral equation
MSC: 35J62
MSC: 35J65
MSC: 65N30
MSC: 65N55
idZBL: Zbl 06362227
idMR: MR3232631
DOI: 10.1007/s10492-014-0055-5
.
Date available: 2014-05-20T07:34:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143773
.
Reference: [1] Du, Q., Yu, D.: A domain decomposition method based on natural boundary reduction for nonlinear time-dependent exterior wave problems.Computing 68 (2002), 111-129. Zbl 1004.65098, MR 1901139, 10.1007/s00607-001-1432-y
Reference: [2] Du, Q., Yu, D.: Dirichlet-Neumann alternating algorithm based on the natural boundary reduction for time-dependent problems over an unbounded domain.Appl. Numer. Math. 44 (2003), 471-486. Zbl 1013.65102, MR 1957689, 10.1016/S0168-9274(02)00188-5
Reference: [3] Du, Q., Zhang, M.: A non-overlapping domain decomposition algorithm based on the natural boundary reduction for wave equations in an unbounded domain.Numer. Math., J. Chin. Univ. 13 (2004), 121-132. Zbl 1075.65121, MR 2156269
Reference: [4] Feng, K.: Finite element method and natural boundary reduction.Proc. Int. Congr. Math., Warszawa 1983, Vol. 2, Z. Ciesielski et al. PWN-Polish Scientific Publishers Warszawa; North-Holland, Amsterdam (1984), 1439-1453. Zbl 0569.65076, MR 0804790
Reference: [5] Han, H., Huang, Z., Yin, D.: Exact artificial boundary conditions for quasilinear elliptic equations in unbounded domains.Commun. Math. Sci. 6 (2008), 71-82. Zbl 1168.65412, MR 2397998, 10.4310/CMS.2008.v6.n1.a4
Reference: [6] Hlaváček, I.: A note on the Neumann problem for a quasilinear elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 211 (1997), 365-369. Zbl 0876.35041, MR 1460177, 10.1006/jmaa.1997.5447
Reference: [7] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192
Reference: [8] Ingham, D. B., Kelmanson, M. A.: Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems.Lecture Notes in Engineering 7 Springer, Berlin (1984). Zbl 0553.76001, MR 0759537, 10.1007/978-3-642-82330-5
Reference: [9] Liu, D., Yu, D.: A FEM-BEM formulation for an exterior quasilinear elliptic problem in the plane.J. Comput. Math. 26 (2008), 378-389. Zbl 1174.65049, MR 2421888
Reference: [10] Meddahi, S., González, M., Pérez, P.: On a FEM-BEM formulation for an exterior quasilinear problem in the plane.SIAM J. Numer. Anal. 37 (2000), 1820-1837. MR 1766849, 10.1137/S0036142998335364
Reference: [11] Yang, M., Du, Q.: A Schwarz alternating algorithm for elliptic boundary value problems in an infinite domain with a concave angle.Appl. Math. Comput. 159 (2004), 199-220. Zbl 1071.65171, MR 2094966, 10.1016/j.amc.2003.10.042
Reference: [12] Yu, D.: Domain decomposition methods for unbounded domains.Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995) R. Glowinski et al. Wiley Chichester 125-132 (1997). MR 1943455
Reference: [13] Yu, D.: Natural Boundary Integral Method and its Applications. Translated from the 1993 Chinese original.Mathematics and its Applications 539 Kluwer Academic Publishers, Dordrecht (2002); Science Press Beijing, Beijing Zbl 1028.65129, MR 1961132
Reference: [14] Zhu, W., Huang, H. Y.: Non-overlapping domain decomposition method for an anisotropic elliptic problem in an exterior domain.Chinese J. Numer. Math. Appl. 26 (2004), 87-101. MR 2087218
.

Files

Files Size Format View
AplMat_59-2014-3_4.pdf 312.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo