Previous |  Up |  Next

Article

Title: Persistence and extinction of a stochastic delay predator-prey model under regime switching (English)
Author: Liu, Zhen Hai
Author: Liu, Qun
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 331-343
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with a stochastic delay predator-prey model under regime switching. Sufficient conditions for extinction and non-persistence in the mean of the system are established. The threshold between persistence and extinction is also obtained for each population. Some numerical simulations are introduced to support our main results. (English)
Keyword: persistence
Keyword: extinction
Keyword: Markov switching
Keyword: delay
Keyword: stochastic perturbations
MSC: 34B16
MSC: 34C25
MSC: 34K25
MSC: 34K50
MSC: 60H10
MSC: 60J25
MSC: 92D25
idZBL: Zbl 06362230
idMR: MR3232634
DOI: 10.1007/s10492-014-0058-2
.
Date available: 2014-05-20T07:40:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143776
.
Reference: [1] Cheng, S. R.: Stochastic population systems.Stochastic Anal. Appl. 27 (2009), 854-874. Zbl 1180.92071, MR 2541380, 10.1080/07362990902844348
Reference: [2] Gard, T. C.: Introduction to Stochastic Differential Equations.Pure and Applied Mathematics 114 Marcel Dekker, New York (1988). Zbl 0628.60064, MR 0917064
Reference: [3] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations.SIAM Rev. 43 (2001), 525-546. Zbl 0979.65007, MR 1872387, 10.1137/S0036144500378302
Reference: [4] Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching.J. Math. Anal. Appl. 376 (2011), 11-28. Zbl 1205.92058, MR 2745384, 10.1016/j.jmaa.2010.10.053
Reference: [5] Liu, M., Li, W., Wang, K.: Persistence and extinction of a stochastic delay logistic equation under regime switching.Appl. Math. Lett. 26 (2013), 140-144. Zbl 1270.34188, MR 2971415, 10.1016/j.aml.2012.04.010
Reference: [6] Liu, M., Wang, K.: Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation.Appl. Math. Modelling 36 (2012), 5344-5353. Zbl 1254.34074, MR 2956748, 10.1016/j.apm.2011.12.057
Reference: [7] Luo, Q., Mao, X.: Stochastic population dynamics under regime switching II.J. Math. Anal. Appl. 355 (2009), 577-593. Zbl 1162.92032, MR 2521735, 10.1016/j.jmaa.2009.02.010
Reference: [8] Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics.Stochastic Processes Appl. 97 (2002), 95-110. Zbl 1058.60046, MR 1870962, 10.1016/S0304-4149(01)00126-0
Reference: [9] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching.World Scientific Hackensack (2006); Imperial College Press, London, 2006. Zbl 1126.60002, MR 2256095
Reference: [10] May, R. M.: Stability and Complexity in Model Ecosystems. With a new introduction by the author. 2nd ed.Princeton Landmarks in Biology Princeton University Press, Princeton (2001). Zbl 1044.92047, MR 1829194
Reference: [11] Samanta, G. P.: Influence of environmental noise in Gompertzian growth model.J. Math. Phys. Sci. 26 (1992), 503-511. Zbl 0778.92017
Reference: [12] Samanta, G. P.: Logistic growth under colored noise.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 37 (1993), 115-122. Zbl 0840.92019, MR 1375084
Reference: [13] Samanta, G. P., Chakrabarti, C. G.: On stability and fluctuation in Gompertzian and logistic growth models.Appl. Math. Lett. 3 (1990), 119-121. Zbl 0707.92021, 10.1016/0893-9659(90)90153-3
Reference: [14] Zhu, C., Yin, G.: On hybrid competitive Lotka-Volterra ecosystems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), e1370--e1379. Zbl 1238.34059, MR 2671923, 10.1016/j.na.2009.01.166
.

Files

Files Size Format View
AplMat_59-2014-3_7.pdf 318.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo