Previous |  Up |  Next

Article

Title: Instability of the stationary solutions of generalized dissipative Boussinesq equation (English)
Author: Esfahani, Amin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 345-358
Summary lang: English
.
Category: math
.
Summary: In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established. (English)
Keyword: damped Boussinesq equation
Keyword: stationary solution
Keyword: instability
MSC: 35B35
MSC: 35Q35
MSC: 35Q53
MSC: 76B15
idZBL: Zbl 06362231
idMR: MR3232635
DOI: 10.1007/s10492-014-0059-1
.
Date available: 2014-05-20T07:42:55Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143777
.
Reference: [1] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I: Existence of a ground state.Arch. Ration. Mech. Anal. 82 (1983), 313-345. Zbl 0533.35029, MR 0695535, 10.1007/BF00250555
Reference: [2] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations II: Existence of infinitely many solutions.Arch. Ration. Mech. Anal. 82 (1983), 347-375. Zbl 0556.35046, MR 0695536, 10.1007/BF00250556
Reference: [3] Biler, P.: Time decay of solutions of semilinear strongly damped generalized wave equations.Math. Methods Appl. Sci. 14 (1991), 427-443. Zbl 0753.35011, MR 1119240, 10.1002/mma.1670140607
Reference: [4] Boussinesq, J.: Essay on the theory of flowing water.Mém. prés. p. div. sav. de Paris 23 (1877), 666-680 French.
Reference: [5] Boussinesq, J.: Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire.C. R. 72 (1871), 755-759 French.
Reference: [6] Boussinesq, J.: Theory of wave and vorticity propagation in a liquid through a long rectangular horizontal channel.Liouville J. 17 (1872), 55-109.
Reference: [7] Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits.Commun. Partial Differ. Equations 10 (1985), 787-1003. MR 0795808, 10.1080/03605308508820396
Reference: [8] Liu, Y.: Instability and blow-up of solutions to a generalized Boussinesq equation.SIAM J. Math. Anal. 26 (1995), 1527-1546. Zbl 0857.35103, MR 1356458, 10.1137/S0036141093258094
Reference: [9] Liu, Y.: Instability of solitary waves for generalized Boussinesq equations.J. Dyn. Differ. Equations 5 (1993), 537-558. Zbl 0784.34048, MR 1235042, 10.1007/BF01053535
Reference: [10] Liu, Y.: On potential wells and vacuum isolating of solutions for semilinear wave equations.J. Differ. Equations 192 (2003), 155-169. Zbl 1024.35078, MR 1987088, 10.1016/S0022-0396(02)00020-7
Reference: [11] Liu, Y., Xu, R.: A class of fourth order wave equations with dissipative and nonlinear strain terms.J. Differ. Equations 244 (2008), 200-228. Zbl 1138.35066, MR 2373660, 10.1016/j.jde.2007.10.015
Reference: [12] Liu, Y., Xu, R.: Fourth order wave equations with nonlinear strain and source terms.J. Math. Anal. Appl. 331 (2007), 585-607. Zbl 1113.35113, MR 2306025, 10.1016/j.jmaa.2006.09.010
Reference: [13] Liu, Y., Xu, R.: Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign.Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 171-189. Zbl 1121.35085, MR 2257457, 10.3934/dcdsb.2007.7.171
Reference: [14] Liu, Y., Xu, R., Yu, T.: Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 3332-3348. Zbl 1149.35367, MR 2401347, 10.1016/j.na.2007.03.029
Reference: [15] Liu, Y., Zhao, J.: On potential wells and applications to semilinear hyperbolic equations and parabolic equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64 (2006), 2665-2687. Zbl 1096.35089, MR 2218541, 10.1016/j.na.2005.09.011
Reference: [16] Miles, J. W.: Solitary waves.Annu. Rev. Fluid Mech. 12 (1980), 11-43. Zbl 0463.76026, MR 0565388, 10.1146/annurev.fl.12.010180.000303
Reference: [17] Ohta, M.: Remarks on blowup of solutions for nonlinear evolution equations of second order.Adv. Math. Sci. Appl. 8 (1998), 901-910. Zbl 0920.35025, MR 1657188
Reference: [18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44 Springer, New York (1983). Zbl 0516.47023, MR 0710486
Reference: [19] Sell, G. R., You, Y.: Semiflows and global attractors.Proc. ICTP Workshop on Infinite Dimensional Dynamical Systems, Trieste, Italy (1993), 1-13.
Reference: [20] Varlamov, V.: Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation.Math. Methods Appl. Sci. 19 (1996), 639-649. Zbl 0847.35111, MR 1385158, 10.1002/(SICI)1099-1476(19960525)19:8<639::AID-MMA786>3.0.CO;2-C
Reference: [21] Varlamov, V.: On the Cauchy problem for the damped Boussinesq equation.Differ. Integral Equ. 9 (1996), 619-634. Zbl 0844.35095, MR 1371712
Reference: [22] Varlamov, V.: On the damped Boussinesq equation in a circle.Nonlinear Anal., Theory Methods Appl. 38 (1999), 447-470. Zbl 0938.35146, MR 1707871, 10.1016/S0362-546X(98)00207-7
Reference: [23] Varlamov, V.: On the initial-boundary value problem for the damped Boussinesq equation.Discrete Contin. Dyn. Syst. 4 (1998), 431-444. Zbl 0952.35103, MR 1612736, 10.3934/dcds.1998.4.431
Reference: [24] You, Y.: Inertial manifolds and applications of nonlinear evolution equations.Proc. ICTP Workshop on Infinite Dimensional Dynamical Systems, Trieste, Italy (1993), 21-34.
.

Files

Files Size Format View
AplMat_59-2014-3_8.pdf 265.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo