Previous |  Up |  Next

Article

Title: Stability and boundedness of solutions of nonlinear vector differential equations of third order (English)
Author: Omeike, M. O.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 101-106
Summary lang: English
.
Category: math
.
Summary: The paper studies the equation \begin{equation*}\dddot{X}+\Psi (\dot{X})\ddot{X}+\Phi (X)\dot{X}+cX=P(t) \end{equation*} in two cases: (i) $P(t)\equiv 0$, (ii) $P(t)\ne 0$. In case (i), the global asymptotic stability of the solution $X=0$ is studied; in case (ii), the boundedness of all solutions is proved. (English)
Keyword: boundedness
Keyword: stability
Keyword: Liapunov function
Keyword: differential equations of third order
MSC: 34C11
MSC: 34D05
MSC: 34D20
MSC: 34D40
idZBL: Zbl 06391569
idMR: MR3215283
DOI: 10.5817/AM2014-2-101
.
Date available: 2014-05-23T09:34:12Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143783
.
Reference: [1] Chukwu, E.N.: On boundedness of solutions of third ordr differential equations.Ann. Math. Pura Appl. (4) 104 (1975), 123–149. MR 0377180
Reference: [2] Ezeilo, J.O.C.: A generalization of a boundedness theorem for a certain third-order differential equation.Proc. Cambridge Philos. Soc. 63 (1967), 735–742. MR 0213657
Reference: [3] Liapunov, A.M.: Stability of Motion.Academic Press London, 1906. MR 0208093
Reference: [4] Mehri, B., Shadman, D.: Boundedness of solutions of certain third order differential equations.Math. Inequal. Appl. 2 (1999), no. 4, 545–549. MR 1717047
Reference: [5] Omeike, M.O., Afuwape, A.U.: New result on the ultimate boundedness of solutions of certain third-order vector differential equations.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 55–61. MR 2797523
Reference: [6] Rao, M.R.M.: Ordinary Differential Equations.Affiliated East West Private Limited, London, 1980. Zbl 0482.34001
Reference: [7] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order.Noordhoff Groningen, 1974.
Reference: [8] Tejumola, H.O.: A note on the boundedness and the stability of solutions of certain third order differential equations.Ann. Mat. Pura Appl. (4) 92 (1972), no. 4, 65–75. Zbl 0242.34046, MR 0318615, 10.1007/BF02417936
Reference: [9] Tunc, C.: Uniform ultimate boundedness of the solutions of third order nonlinear differential equations.Kuwait J. Sci. Engrg. 12 (2005), no. 1, 39–48. Zbl 1207.34043, MR 2145249
Reference: [10] Tunc, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third-order.Nonlinear Anal. 70 (2009), 2232–2236. Zbl 1162.34043, MR 2498299, 10.1016/j.na.2008.03.002
Reference: [11] Tunc, C., Ates, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations.Nonlinear Dynam. 45 (2006), no. 3–4, 271–281. Zbl 1132.34328, MR 2250136
.

Files

Files Size Format View
ArchMathRetro_050-2014-2_4.pdf 401.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo