Previous |  Up |  Next

Article

Title: On some consequences of a generalized continuity (English)
Author: Das, Pratulananda
Author: Savas, Ekrem
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 107-114
Summary lang: English
.
Category: math
.
Summary: In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces. (English)
Keyword: continuity
Keyword: $({\mathbf{G_1}},{\mathbf{G_2}})$-continuity
Keyword: homogeneous
Keyword: linearity
Keyword: conditions (NL1) and (NL2)
Keyword: normed space
MSC: 40C05
MSC: 47L05
idZBL: Zbl 06391570
idMR: MR3215284
DOI: 10.5817/AM2014-2-107
.
Date available: 2014-05-23T09:35:59Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143784
.
Reference: [1] Antoni, J.: On the A-continuity of real functions II.Math. Slovaca 36 (1986), no. 3, 283–287. MR 0866628
Reference: [2] Antoni, J., Salat, T.: On the A-continuity of real functions.Acta Math. Univ. Comenian 39 (1980), 159–164. Zbl 0519.40006, MR 0619271
Reference: [3] Boos, J.: Classical and Modern Methods in Summability.Oxford Univ. Press, Oxford, 2000. Zbl 0954.40001, MR 1817226
Reference: [4] Borsik, J., Salat, T.: On F -continuity of real functions.Tatra Mt. Math. Publ. 2 (1993), 37–42. Zbl 0788.26004, MR 1251035
Reference: [5] Buck, R.C.: Solution of problem 4216.Amer. Math. Monthly 55 (1948), 36. MR 1526874
Reference: [6] Cakalli, H.: Sequential definitions of compactness.Appl.Math. Lett. 21 (2008), no. 6, 594–598. Zbl 1145.54001, MR 2412384, 10.1016/j.aml.2007.07.011
Reference: [7] Cakalli, H.: On G-continuity.Comput. Math. Appl. 61 (2011), 313–318. Zbl 1211.40002, MR 2754139, 10.1016/j.camwa.2010.11.006
Reference: [8] Cakalli, H.: Sequential definitions of connectedness.Appl. Math. Lett. 25 (2012), 461–465. Zbl 1245.54021, MR 2856014, 10.1016/j.aml.2011.09.036
Reference: [9] Cakalli, H., Das, P.: Fuzzy compactness via summability.Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. Zbl 1180.54010, MR 2569060, 10.1016/j.aml.2009.05.015
Reference: [10] Connor, J., Grosse-Erdmann, K.-G.: Sequential definitions of continuity for real functions.Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. Zbl 1040.26001, MR 1994482, 10.1216/rmjm/1181069988
Reference: [11] Dik, M., Canak, I.: New types of continuities.Abstr. Appl. Anal. 2010 (2010), p.6. DOI: http://dx.doi.org/10.1155/2010/258980 Zbl 1192.26003, MR 2646690
Reference: [12] Iwinski, T.B.: Some remarks on Toeplitz methods and continuity.Comment. Math. Prace Mat. 17 (1972), 37–43. Zbl 0243.40005, MR 0322397
Reference: [13] Lahiri, B.K., Das, P.: $I$ and $I^*$ convergence in topological spaces.Math. Bohemica 130 (2005), no. 2, 153–160. Zbl 1111.40001, MR 2148648
Reference: [14] Maio, G.D., Kocinac, Lj.D.R.: Statistical convergence in topology.Topology Appl. 156 (2008), 28–45. Zbl 1155.54004, MR 2463821, 10.1016/j.topol.2008.01.015
Reference: [15] Posner, E.C.: Summability preserving functions.Proc. Amer. Math. Soc. 112 (1961), 73–76. Zbl 0097.04602, MR 0121591, 10.1090/S0002-9939-1961-0121591-X
Reference: [16] Robbins, H.: Problem 4216.Amer. Math. Monthly 53 (1946), 470–471.
Reference: [17] Savas, E., Das, G.: On the A-continuity of real functions.İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. MR 1421240
Reference: [18] Spigel, E., Krupnik, N.: On the $A$-continuity of real functions.J. Anal. 2 (1994), 145–155. MR 1281505
Reference: [19] Srinivasan, V.K.: An equivalent condition for the continuity of a function.Texas J. Sci. 32 (1980), 176–177. MR 0574766
.

Files

Files Size Format View
ArchMathRetro_050-2014-2_5.pdf 479.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo