Previous |  Up |  Next

Article

Title: On curves and jets of curves on supermanifolds (English)
Author: Bruce, Andrew James
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 115-130
Summary lang: English
.
Category: math
.
Summary: In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature. (English)
Keyword: supermanifolds
Keyword: curves
Keyword: jets
Keyword: higher order tangent bundles
MSC: 58A20
MSC: 58A32
MSC: 58A50
idZBL: Zbl 06391571
idMR: MR3215285
DOI: 10.5817/AM2014-2-115
.
Date available: 2014-05-23T09:37:55Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143785
.
Reference: [1] Alldridge, A.: A convenient category of supermanifolds.arXiv:1109.3161 [math.DG] 2011.
Reference: [2] Cariñena, J.F., Figueroa, H.: Geometric formulation of higher order Lagrangian systems in supermechanics.Acta Appl. Math. 51 (1998), 25–58. Zbl 0999.70018, MR 1609857, 10.1023/A:1005870025318
Reference: [3] Carmeli, C., Caston, L., Fioresi, R.: Mathematical Foundations of Supersymmetry.EMS Series of Lectures in Mathematics, European Mathematical Society, 2011. Zbl 1226.58003, MR 2840967
Reference: [4] Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein).Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. Zbl 1170.58302, MR 1701597
Reference: [5] DeWitt, B.: Supermanifolds.Cambridge Monogr. Math. Phys., Cambridge University Press, 1984. Zbl 0551.53002, MR 0778559
Reference: [6] di Bruno, F. Faà: Sullo sviluppo delle Funzioni.Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480, (in Italian).
Reference: [7] Dumitrescu, F.: Superconnections and parallel transport.Pacific J. Math. 236 (2008), 307–332. Zbl 1155.58001, MR 2407109, 10.2140/pjm.2008.236.307
Reference: [8] Garnier, S., Wurzbacher, T.: The geodesic flow on a Riemannian supermanifold.J. Geom. Phys. 62 (2012), 1489–1508. Zbl 1242.53046, MR 2911220, 10.1016/j.geomphys.2012.02.002
Reference: [9] Goertsches, O.: Riemannian supergeometry.Math. Z. 260 (2008), no. 3, 557–593. Zbl 1154.58001, MR 2434470
Reference: [10] Grabowski, J., Rotkiewicz, M.: Graded bundles and homogeneity structures.J. Geom. Phys. 62 (2011), 21–36. MR 2854191, 10.1016/j.geomphys.2011.09.004
Reference: [11] Hélein, F.: An introduction to supermanifolds and supersymmetry.Systèmes intégrables et théorie des champs quantiques (Baird, P., Hélein, F., Kouneiher, J., Pedit, F., Roubtsov, V., eds.), Hermann, 2009, pp. 103–157.
Reference: [12] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer–Verlag, 1993, http://www.emis.de/monographs/KSM/index.html. MR 1202431
Reference: [13] Lane, S. Mac: Categories for the working mathematician.Graduate Texts in Mathematics, vol. 5, Springer–Verlag, New York, 1998, Second Edition. MR 1712872
Reference: [14] Manin, Y.: Gauge Field Theory and Complex Geometry.Springer, 1997, Second Edition. Zbl 0884.53002, MR 1632008
Reference: [15] Rogers, A.: A global theory of supermanifolds.J. Math. Phys. 21 (1980), 1352–1365. Zbl 0447.58003, MR 0574696, 10.1063/1.524585
Reference: [16] Rogers, A.: Supermanifolds: theory and applications.World Scientific, 2007. Zbl 1135.58004, MR 2320438
Reference: [17] Shvarts, A.S.: On the definition of superspace.Teoret. Mat. Fiz. 60 (1984), no. 1, 37–42. Zbl 0575.58005, MR 0760438
Reference: [18] Van Proeyen, A.: Superconformal symmetry and higher-derivative Lagrangians.Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity, Frascati, 2013, arXiv:1306.2169 [hep-th].
Reference: [19] Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction.Courant Lecture Notes, vol. 11, Providence, RI: American Mathematical Society, 2004. Zbl 1142.58009, MR 2069561
Reference: [20] Voronov, A.A.: Maps of supermanifolds.Teoret. Mat. Fiz. 60 (1984), no. 1, 43–48, (Russian). MR 0760439
.

Files

Files Size Format View
ArchMathRetro_050-2014-2_6.pdf 537.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo