Previous |  Up |  Next

Article

Title: Degradation in probability logic: When more information leads to less precise conclusions (English)
Author: Wallmann, Christian
Author: Kleiter, Gernot D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 268-283
Summary lang: English
.
Category: math
.
Summary: Probability logic studies the properties resulting from the probabilistic interpretation of logical argument forms. Typical examples are probabilistic Modus Ponens and Modus Tollens. Argument forms with two premises usually lead from precise probabilities of the premises to imprecise or interval probabilities of the conclusion. In the contribution, we study generalized inference forms having three or more premises. Recently, Gilio has shown that these generalized forms “degrade” – more premises lead to more imprecise conclusions, i. e., to wider intervals. We distinguish different forms of degradation. We analyse Predictive Inference, Modus Ponens, Bayes' Theorem, and Modus Tollens. Special attention is devoted to the case where the conditioning events have zero probabilities. Finally, we discuss the relation of degradation to monotonicity. (English)
Keyword: probability logic
Keyword: generalized inference forms
Keyword: degradation
Keyword: total evidence
Keyword: coherence
Keyword: probabilistic Modus Tollens
MSC: 03B48
MSC: 68T37
MSC: 97K50
idZBL: Zbl 1296.03018
idMR: MR3216994
DOI: 10.14736/kyb-2014-2-0268
.
Date available: 2014-06-06T14:47:54Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143793
.
Reference: [1] Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting..Kluwer, Dordrecht 2002. Zbl 1040.03017, MR 2042026
Reference: [2] Finetti, B. De: Theory of Probability. A Critical Introductory Treatment. Volume 1..Wiley, New York 1974. Zbl 0694.60001, MR 0440640
Reference: [3] Fréchet, M.: Généralisations du théorème des probabilités totales..Fund. Math. 255 (1935), 379-387. Zbl 0012.26503
Reference: [4] Gilio, A.: Generalization of inference rules in coherence-based probabilistic default reasoning..Internat. J. Approx. Reason. 53 (2012), 413-434. MR 2902403, 10.1016/j.ijar.2011.08.004
Reference: [5] Gilio, A., Sanfilippo, G.: Conditional random quantities and iterated conditioning in the setting of coherence..In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty (L. van der Gaag, ed.), Lecture Notes in Comput. Sci. 7958, Springer (2013), pp. 218-229. MR 3108507
Reference: [6] Good, I. J.: On the principle of total evidence..British J. Philos. Sci. 17 (1967), 319-321. 10.1093/bjps/17.4.319
Reference: [7] Kleiter, G. D.: Ockham's razor in probability logic..In: Synergies of Soft Computing and Statistics for Intelligent Data Analysis (R. Kruse, M. R. Berthold, C. Moewes, M. A. Gil, P. Grzegorzewski and O. Hryniewicz, eds.). Adv. in Intelligent Systems and Computation 190, Springer (2012), pp. 409-417.
Reference: [8] Kyburg, H. E., Teng, C. M.: Uncertain Inference..Cambridge University Press, Cambridge 2001. Zbl 1013.68595, MR 1964408
Reference: [9] Lad, F.: Operational Subjective Statistical Methods..Wiley, New York 1996. Zbl 0862.62005, MR 1421323
Reference: [10] Manktelow, K. I., Over, D. E., Elqayam, S.: The Science of Reasoning. A Festschrift for Jonathan St B.T. Evans..Psychology Press, New York 2011.
Reference: [11] Wagner, C. G.: Modus tollens probabilized..British J. Philos. Sci. 55 (2004), 4, 747-753. Zbl 1062.03015, MR 2115533, 10.1093/bjps/55.4.747
Reference: [12] Wallmann, C., Kleiter, G. D.: Exchangeability in probability logic..In: IPMU 2012, Part IV (S. Greco et al., eds.), CCIS 300 (2012), pp. 157-167. Zbl 1252.03043
Reference: [13] Wallmann, C., Kleiter, G. D.: Probability propagation in generalized inference forms..Studia Logica. In press. doi: 10.1007/s11225-013-9513-4. 10.1007/s11225-013-9513-4
.

Files

Files Size Format View
Kybernetika_50-2014-2_7.pdf 339.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo