Previous |  Up |  Next

Article

Title: Jordan ideals and derivations in prime near-rings (English)
Author: Boua, Abdelkarim
Author: Oukhtite, Lahcen
Author: Raji, Abderrahmane
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 131-139
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate $3$-prime near-rings with derivations satisfying certain differential identities on Jordan ideals, and we provide examples to show that the assumed restrictions cannot be relaxed. (English)
Keyword: prime near-rings
Keyword: Jordan ideals
Keyword: derivations
Keyword: commutativity
MSC: 16N60
MSC: 16W25
MSC: 16Y30
idZBL: Zbl 06391532
idMR: MR3193920
.
Date available: 2014-06-07T15:29:47Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143795
.
Reference: [1] Argac N.: On prime and semiprime rings with derivations.Algebra Colloq. 13 (2006), no. 3, 371–380. Zbl 1096.16014, MR 2233096, 10.1142/S1005386706000320
Reference: [2] Ashraf M., Ali A., Ali S.: $(\sigma ,\tau )$-derivations on prime near rings.Arch. Math. (Brno) 40 (2004), no. 3, 281–286. Zbl 1114.16040, MR 2107023
Reference: [3] Ashraf M., Shakir A.: On $(\sigma , \tau )$-derivations of prime near-rings II.Sarajevo J. Math. 4 (2008), no. 16, 23–30. Zbl 1169.16028, MR 2428485
Reference: [4] Beidar K.I., Fong Y., Wang X.K.: Posner and Herstein theorems for derivations of $3$-prime near-rings.Comm. Algebra 24 (1996), no. 5, 1581–1589. Zbl 0849.16039, MR 1386483, 10.1080/00927879608825656
Reference: [5] Bell H.E.: On derivations in near-rings.II, Kluwer Academic Publishers, Dordrecht, 1997, pp. 191–197. Zbl 0911.16026, MR 1492193
Reference: [6] Bell H.E., Argac N.: Derivations, products of derivations, and commutativity in near-rings.Algebra Colloq. 8 (2001), no. 4, 399–407. Zbl 1004.16046, MR 1865120
Reference: [7] Bell H.E., Mason G.: On derivations in near-rings.North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987, pp. 31–35. Zbl 0810.16042, MR 0890753, 10.1016/S0304-0208(08)72283-7
Reference: [8] Bell H.E., Mason G.: On derivations in near-rings and rings.Math. J. Okayama Univ. 34 (1992), 135–144. Zbl 0810.16042, MR 1272613
Reference: [9] Boua A., Oukhtite L.: Derivations on prime near-rings.Int. J. Open Probl. Comput. Sci. Math. 4 (2011), no. 2, 162–167. MR 2805230
Reference: [10] Mansoor A.: Lie and Jordan ideals in prime rings with derivations.Proc. Amer. Math. Soc. 55 (1976), no. 2, 275–278. Zbl 0327.16021, MR 0399181, 10.1090/S0002-9939-1976-0399181-4
Reference: [11] Oukhtite L., Mamouni A.: Derivations satisfying certain algebraic identities on Jordan ideals.Arab. J. Math. 1 (2012), no. 3, 341–346. Zbl 1273.16038, MR 3041071, 10.1007/s40065-012-0039-9
Reference: [12] Oukhtite L.: Posner's second theorem for Jordan ideals in rings with involution.Expo. Math. 29 (2011), no. 4, 415–419. Zbl 1232.16027, MR 2861767, 10.1016/j.exmath.2011.07.002
Reference: [13] Oukhtite L.: Left multipliers and Jordan ideals in rings with involution.Afr. Diaspora J. Math. 11 (2011), no. 1, 24–28. Zbl 1243.16045, MR 2792207
Reference: [14] Oukhtite L.: On Jordan ideals and derivations in rings with involution.Comment. Math. Univ. Carolin. 51 (2010), no. 3, 389–395. Zbl 1211.16037, MR 2741872
Reference: [15] Wang X.K.: Derivations in prime near-rings.Proc. Amer. Math. Soc. 121 (1994), 361–366. Zbl 0811.16040, MR 1181177, 10.1090/S0002-9939-1994-1181177-7
Reference: [16] Zaidi S.M.A., Ashraf M., Ali S.: On Jordan ideals and left $(\theta ,\theta)$-derivations in prime rings.Int. J. Math. Math. Sci. 2004 (2004), no. 37–40, 1957–1964. Zbl 1069.16041, MR 2100888, 10.1155/S0161171204309075
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_1.pdf 198.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo