Previous |  Up |  Next

Article

Title: A $\mathbb Z_4^3$-grading on a $56$-dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type $E$ (English)
Author: Aranda-Orna, Diego
Author: Elduque, Alberto
Author: Kochetov, Mikhail
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 285-313
Summary lang: English
.
Category: math
.
Summary: We describe two constructions of a certain $\mathbb Z_4^3$-grading on the so-called Brown algebra (a simple structurable algebra of dimension $56$ and skew-dimension $1$) over an algebraically closed field of characteristic different from $2$. The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types $E_6$, $E_7$ and $E_8$. (English)
Keyword: graded algebra
Keyword: structurable algebra
Keyword: exceptional simple Lie algebra
MSC: 17A30
MSC: 17B25
MSC: 17B70
MSC: 17C40
idZBL: Zbl 06391544
idMR: MR3225611
.
Date available: 2015-01-19T10:48:11Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143809
.
Reference: [AM99] Albuquerque H., Majid S.: Quasialgebra structure of the octonions.J. Algebra 220 (1999), no. 1, 188–224. Zbl 0999.17006, MR 1713433, 10.1006/jabr.1998.7850
Reference: [All78] Allison B.N.: A class of nonassociative algebras with involution containing the class of Jordan algebras.Math. Ann. 237 (1978), 133–156. Zbl 0368.17001, MR 0507909, 10.1007/BF01351677
Reference: [All79] Allison B.N.: Models of isotropic simple Lie algebras.Comm. Algebra 7 (1979), no. 17, 1835–1875. Zbl 0422.17006, MR 0547712, 10.1080/00927877908822432
Reference: [All90] Allison B.N.: Simple structurable algebras of skew-dimension one.Comm. Algebra 18 (1990), no. 4, 1245–1279. Zbl 0702.17002, MR 1059949, 10.1080/00927879008823963
Reference: [AF84] Allison B.N., Faulkner J.R.: A Cayley–Dickson process for a class of structurable algebras.Trans. Amer. Math. Soc. 283 (1984), no. 1, 185–210. Zbl 0543.17015, MR 0735416, 10.1090/S0002-9947-1984-0735416-2
Reference: [AF92] Allison B.N., Faulkner J.R.: Norms on structurable algebras.Comm. Algebra 20 (1992), no. 1, 155–188. Zbl 0753.17004, MR 1145331, 10.1080/00927879208824337
Reference: [AF93] Allison B.N., Faulkner J.R.: Nonassociative coefficient algebras for Steinberg unitary Lie algebras.J. Algebra 161 (1993), no. 1, 1–19. Zbl 0812.17002, MR 1245840, 10.1006/jabr.1993.1202
Reference: [Bro63] Brown R.B.: A new type of nonassociative algebra.Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 947–949. MR 0158913, 10.1073/pnas.50.5.947
Reference: [DE13] Draper C., Elduque A.: Maximal finite abelian subgroups of $E_8$.arXiv:1312.4326.
Reference: [DV12] Draper C., Viruel A.: Fine gradings on $\mathfrak{e}_6$.arXiv:1207.6690.
Reference: [Eld13] Elduque A.: Fine gradings and gradings by root systems on simple Lie algebras.to appear in Rev. Mat. Iberoam.; arXiv:1303.0651.
Reference: [EK13] Elduque A., Kochetov M.: Gradings on simple Lie algebras.Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI, 2013. Zbl 1281.17001, MR 3087174
Reference: [EO07] Elduque A., Okubo S.: Lie algebras with $S_4$-action and structurable algebras.J. Algebra 307 (2007), no. 2, 864–890. Zbl 1172.17013, MR 2275376, 10.1016/j.jalgebra.2006.08.033
Reference: [Gar01] Garibaldi S.: Structurable Algebras and Groups of Type $E_6$ and $E_7$.J. Algebra 236 (2001), no. 2, 651–691. MR 1813495, 10.1006/jabr.2000.8514
Reference: [Jac68] Jacobson N.: Structure and representations of Jordan algebras.American Mathematical Society Colloquium Publications 39, American Mathematical Society, Providence, RI, 1968. Zbl 0218.17010, MR 0251099
Reference: [McC69] McCrimmon K.: The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras.Trans. Amer. Math. Soc. 139 (1969), 495–510. Zbl 0175.02703, MR 0238916, 10.1090/S0002-9947-1969-0238916-9
Reference: [McC70] McCrimmon K.: The Freudenthal-Springer-Tits constructions revisited.Trans. Amer. Math. Soc. 148 (1970), 293–314. Zbl 0224.17013, MR 0271181, 10.1090/S0002-9947-1970-0271181-3
Reference: [Smi92] Smirnov O.N.: Simple and semisimple structurable algebras.Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math. 131, Part 2, Amer. Math. Soc., Providence, RI, 1992, pp. 685–694. Zbl 0765.17003, MR 1175866
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_3.pdf 440.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo