Title:
|
Towards a geometric theory for left loops (English) |
Author:
|
Baez, Karla |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
315-323 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups. (English) |
Keyword:
|
left loops |
Keyword:
|
Cayley graphs |
Keyword:
|
rate of growth |
Keyword:
|
hyperbolicity |
MSC:
|
05C25 |
MSC:
|
20N05 |
idZBL:
|
Zbl 06391545 |
idMR:
|
MR3225612 |
. |
Date available:
|
2015-01-19T10:48:40Z |
Last updated:
|
2016-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143810 |
. |
Reference:
|
[1] Baer R.: Nets and groups.Trans. Amer. Math. Soc. 46 (1939), 110–141. Zbl 0023.21502, MR 0000035, 10.1090/S0002-9947-1939-0000035-5 |
Reference:
|
[2] de la Harpe P.: Topics in geometric group theory.University of Chicago Press, Chicago, IL, 2000. Zbl 0965.20025, MR 1786869 |
Reference:
|
[3] Gauyaq G.: On quasi-Cayley graphs.Discrete Appl. Math. 77 (1997), 43–58. MR 1460327, 10.1016/S0166-218X(97)00098-X |
Reference:
|
[4] Griggs T.S.: Graphs obtained from Moufang loops and regular maps.J. Graph Theory 70 (2012), 427–434. Zbl 1247.05099, MR 2957056, 10.1002/jgt.20623 |
Reference:
|
[5] Howie J.: Hyperbolic Groups. Lecture Notes.Heriot-Watt University. |
Reference:
|
[6] Mwambene E.: Characterization of regular graphs as loop graphs.Quaest. Math. 25 (2005), no. 2, 243–250. MR 2146390, 10.2989/16073600509486125 |
Reference:
|
[7] Mwambene E.: Multiples of left loops and vertex-transitive graphs.Cent. Eur. J. Math. 3 (2005), no. 2, 254–250. Zbl 1117.05052, MR 2129915, 10.2478/BF02479200 |
Reference:
|
[8] Mwambene E.: Representing vertex-transitive graphs on groupoids.Quaest. Math. 29 (2009), 279–284. Zbl 1107.05080, MR 2259722, 10.2989/16073600609486163 |
Reference:
|
[9] Pflugfelder H.O.: Quasi-Groups and Loops: An Introduction.Heldermann, Berlin, 1990. |
Reference:
|
[10] Sabidussi G.: On a class of fixed-point-free graphs.Proc. Amer. Math. Soc. 9 (1958), no. 5, 800–804. Zbl 0091.37701, MR 0097068, 10.1090/S0002-9939-1958-0097068-7 |
Reference:
|
[11] Sabidussi G.: Vertex-transitive graphs.Monatsh. Math. 68 (1964), 426–438. Zbl 0136.44608, MR 0175815, 10.1007/BF01304186 |
. |