Previous |  Up |  Next

Article

Title: An overview of free nilpotent Lie algebras (English)
Author: Benito, Pilar
Author: de-la-Concepción, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 325-339
Summary lang: English
.
Category: math
.
Summary: Any nilpotent Lie algebra is a quotient of a free nilpotent Lie algebra of the same nilindex and type. In this paper we review some nice features of the class of free nilpotent Lie algebras. We will focus on the survey of Lie algebras of derivations and groups of automorphisms of this class of algebras. Three research projects on nilpotent Lie algebras will be mentioned. (English)
Keyword: Lie algebra
Keyword: Levi subalgebra
Keyword: nilpotent
Keyword: free nilpotent
Keyword: derivation
Keyword: automorphism
Keyword: representation
MSC: 17B10
MSC: 17B30
idZBL: Zbl 06391546
idMR: MR3225613
.
Date available: 2015-01-19T10:49:49Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143811
.
Reference: [1] Ancochea-Bermúdez J.M., Campoamor-Stursberg R., García Vergnolle L.: Classification of Lie algebras with naturally graded quasi-filiform nilradicals.J. Geom. Phys. 61 (2011), no. 11, 2168–2186. Zbl 1275.17023, MR 2827117, 10.1016/j.geomphys.2011.06.015
Reference: [2] Ancochea-Bermúdez J.M., Campoamor-Stursberg R., García Vergnolle L.: Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical.Int. Math. Forum 1 (2006), no. 7, 309–316. Zbl 1142.17300, MR 2237946
Reference: [3] Auslander L., Scheuneman J.: On certain automorphisms of nilpotent Lie groups.Global Analysis: Proc. Symp. Pure Math. 14 (1970), 9–15. Zbl 0223.22014, MR 0270395
Reference: [4] Del Barco V.J., Ovando G.P.: Free nilpotent Lie algebras admitting ad-invariant metrics.J. Algebra 366 (2012), 205–216. MR 2942650, 10.1016/j.jalgebra.2012.05.016
Reference: [5] Benito P., de-la-Concepción D.: On Levi extensions of nilpotent Lie algebras.Linear Algebra Appl. 439 (2013), no. 5, 1441–1457. Zbl 1281.17014, MR 3067814, 10.1016/j.laa.2013.04.027
Reference: [6] Benito P., de-la-Concepción D.: A note on extensions of nilpotent Lie algebras of Type $2$.arXiv:1307.8419.
Reference: [7] Cui R., Wang Y., Deng S.: Solvable Lie algebras with quasifiliforms nilradicals.Comm. Algebra 36 (2008), 4052–4067. MR 2460402, 10.1080/00927870802174629
Reference: [8] Dengyin W., Ge H., Li X.: Solvable extensions of a class of nilpotent linear Lie algebras.Linear Algebra Appl. 437 (2012), 14–25. MR 2917429
Reference: [9] Favre G., Santharoubane L.: Symmetric, invariant, non-degenerate bilinear form on a Lie algebra.J. Algebra 105 (1987), no. 2, 451–464. Zbl 0608.17007, MR 0873679, 10.1016/0021-8693(87)90209-2
Reference: [10] Figueroa-O'Farrill J.M., Stanciu S.: On the structure of symmetric self-dual Lie algebras.J. Math. Phys. 37 (1996), 4121–4134. Zbl 0863.17004, MR 1400838, 10.1063/1.531620
Reference: [11] Gauger M.A.: On the classification of metabelian Lie algebras.Trans. Amer. Math. Soc. 179 (1973), 293–329. Zbl 0267.17015, MR 0325719, 10.1090/S0002-9947-1973-0325719-0
Reference: [12] Gong, Ming-Peng: Classification of nilpotent Lie algebras of dimension $7$ over algebraically closed fields and $\mathbb{R}$.Ph.D. Thesis, Waterloo, Ontario, Canada, 1998. MR 2698220
Reference: [13] Grayson M., Grossman R.: Models for free nilpotent Lie algebras.J. Algebra 35 (1990), 117–191. Zbl 0717.17006, MR 1076084
Reference: [14] Hall M.: A basis for free Lie rings and higher commutators in free groups.Proc. Amer. Math. Soc. 1 (1950), 575–581. Zbl 0039.26302, MR 0038336, 10.1090/S0002-9939-1950-0038336-7
Reference: [15] Humphreys J.E.: Introduction to Lie algebras and representation theory.vol. 9, Springer, New York, 1972. Zbl 0447.17002, MR 0323842
Reference: [16] Jacobson N.: Lie Algebras.Dover Publications, Inc., New York, 1962. Zbl 0333.17009, MR 0143793
Reference: [17] Kath I., Olbrich M.: Metric Lie algebras with maximal isotropic centre.Math. Z. 246 (2004), no. 1–2, 23–53. Zbl 1046.17003, MR 2031443, 10.1007/s00209-003-0575-2
Reference: [18] Kath I.: Nilpotent metric Lie algebras and small dimension.J. Lie Theory 17 (2007), no. 1, 41–61. MR 2286880
Reference: [19] Lauret J.: Examples of Anosov diffeomorphisms.J. Algebra 262 (2003), no. 1, 201–209. Zbl 1015.37022, MR 1970807, 10.1016/S0021-8693(03)00030-9
Reference: [20] Zhu L.: Solvable quadratic algebras.Science in China: Series A Mathematics 49 (2006), no. 4, 477–493. MR 2250478, 10.1007/s11425-006-0477-y
Reference: [21] Mainkar M.G.: Anosov Lie algebras and algebraic units in number fields.Monatsh. Math. 165 (2012), 79–90. Zbl 1259.37020, MR 2886124, 10.1007/s00605-010-0260-6
Reference: [22] Malcev A.I.: On solvable Lie algebras.Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 329–352; English transl.: Amer. Math. Soc. Transl. (1) 9 (1962), 228–262; MR 9, 173. MR 0022217
Reference: [23] Medina A., Revoy P.: Algèbres de Lie et produit scalaire invariant (Lie algebras and invariant scalar products).Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 553–561. MR 0826103
Reference: [24] Okubo S.: Gauge theory based upon solvable Lie algebras.J. Phys. A 31 (1998), 7603–7609. Zbl 0951.81015, MR 1652914, 10.1088/0305-4470/31/37/018
Reference: [25] Onishchik A.L., Khakimdzhanov Y.B.: On semidirect sums of Lie algebras.Mat. Zametki 18 (1975), no. 1, 31–40; English transl.: Math. Notes 18 (1976), 600–604. Zbl 0322.17003, MR 0427409
Reference: [26] Onishchick A.L., Vinberg E.B.: Lie Groups and Lie Algebras III.Encyclopaedia of Mathematical Sciences, 41, Springer, 1994. MR 1349140
Reference: [27] Patera J., Zassenhaus H.: The construction of Lie algebras from equidimensional nilpotent algebras.Linear Algebra Appl. 133 (1990), 89–120. MR 1058108
Reference: [28] Payne T.L.: Anosov automorphisms of nilpotent Lie algebras.J. Mod. Dyn. 3 (2009), no. 1, 121–158. Zbl 1188.37031, MR 2481335, 10.3934/jmd.2009.3.121
Reference: [29] Rubin J.L., Winternitz P.: Solvable Lie algebras with Heisenberg ideals.J. Phys. A 26 (1993), no. 5, 1123–1138. Zbl 0773.17004, MR 1211350, 10.1088/0305-4470/26/5/031
Reference: [30] Sato T.: The derivations of the Lie algebras.Tohoku Math. J. 23 (1971), 21–36. Zbl 0253.17012, MR 0288156, 10.2748/tmj/1178242684
Reference: [31] Smale S.: Differentiable dynamical systems.Bull. Amer. Math. Soc. 73 (1967), 747–817. Zbl 0205.54201, MR 0228014, 10.1090/S0002-9904-1967-11798-1
Reference: [32] Šnobl L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras.J. Phys. A 43 (2010), no. 50, 505202 (17 pages). Zbl 1231.17004, MR 2740380, 10.1088/1751-8113/43/50/505202
Reference: [33] Turkowski P.: Structure of real Lie algebras.Linear Algebra Appl. 171 (1992), 197–212. Zbl 0761.17003, MR 1165454, 10.1016/0024-3795(92)90259-D
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_5.pdf 295.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo