Previous |  Up |  Next

Article

Title: Time delay in chemical exchange during an NMR pulse (English)
Author: Gamliel, Dan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 155-162
Summary lang: English
.
Category: math
.
Summary: Spin exchange with a time delay in NMR (nuclear magnetic resonance) was treated in a previous work. In the present work the idea is applied to a case where all magnetization components are relevant. The resulting DDE (delay differential equations) are formally solved by the Laplace transform. Then the stability of the system is studied using the real and imaginary parts of the determinant in the characteristic equation. Using typical parameter values for the DDE system, stability is shown for all relevant cases. Also non-oscillating terms in the solution were found by studying the same determinant using similar parameter values. (English)
Keyword: magnetic resonance
Keyword: spin exchange
Keyword: delay differential equation
Keyword: characteristic equation
MSC: 11C20
MSC: 34C26
MSC: 34K06
MSC: 82D40
idZBL: Zbl 06362250
idMR: MR3238831
DOI: 10.21136/MB.2014.143846
.
Date available: 2014-07-14T08:08:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143846
.
Reference: [1] Bellman, R., Cooke, K. L.: Differential-Difference Equations.Mathematics in Science and Engineering 6 Academic Press, New York (1963). Zbl 0105.06402, MR 0147745
Reference: [2] Gamliel, D., Levanon, H.: Stochastic Processes in Magnetic Resonance.World Scientific, Singapore (1995).
Reference: [3] Gamliel, D.: Generalized exchange in magnetic resonance.Funct. Differ. Equ. 18 (2011), 201-227. MR 3308424
Reference: [4] Gamliel, D.: Using the Lambert function in an exchange process with a time delay.Electron. J. Qual. Theory Differ. Equ. Proc. 9th Coll. QTDE 7 (2012), 1-12. MR 3338526
Reference: [5] Gamliel, D., Domoshnitsky, A., Shklyar, R.: Time evolution of spin exchange with a time delay.Funct. Differ. Equ. 20 (2013), 81-113. MR 3328887
Reference: [6] Hadley, G.: Linear Algebra.Addison-Wesley Series in Industrial Management Addison Wesley Publishing Company, Reading (1961). Zbl 0108.01103, MR 0121368
Reference: [7] Horn, R. A., Johnson, C. R.: Matrix Analysis.(2nd ed.), Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290
Reference: [8] Kaplan, J. I., Fraenkel, G.: NMR of Chemically Exchanging Systems.Academic Press, New York (1980).
Reference: [9] Verheyden, K., Luzyanina, T., Roose, D.: Efficient computation of characteristic roots of delay differential equations using LMS methods.J. Comput. Appl. Math. 214 (2008), 209-226. Zbl 1135.65349, MR 2391684, 10.1016/j.cam.2007.02.025
Reference: [10] Vyhlídal, T., Zítek, P.: Mapping based algorithm for large scale computation of quasi-polynomial zeros.IEEE Trans. Autom. Control 54 (2009), 171-177. MR 2478083, 10.1109/TAC.2008.2008345
Reference: [11] Woessner, D. E., Zhang, S., Merritt, M. E., Sherry, A. D.: Numerical solutions of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI.Mag. Reson. Med. 53 (2005), 790-799. 10.1002/mrm.20408
Reference: [12] Wu, Z., Michiels, W.: Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method.J. Comput. Appl. Math. 236 (2012), 2499-2514. Zbl 1237.65065, MR 2879716, 10.1016/j.cam.2011.12.009
.

Files

Files Size Format View
MathBohem_139-2014-2_5.pdf 330.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo