Previous |  Up |  Next

Article

Title: Homogenization of a carcinogenesis model with different scalings with the homogenization parameter (English)
Author: Graf, Isabell
Author: Peter, Malte A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 163-184
Summary lang: English
.
Category: math
.
Summary: In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace-Beltrami operator. For the binding process to the surface of the endoplasmic reticulum, different scalings with powers of the homogenization parameter are considered. This leads to three qualitatively different models in the homogenization limit. (English)
Keyword: periodic homogenization
Keyword: two-scale convergence
Keyword: carcinogenesis
Keyword: reaction-diffusion system
Keyword: surface diffusion
MSC: 35B10
MSC: 35B27
MSC: 35B45
MSC: 35K51
MSC: 35K58
MSC: 92C37
idZBL: Zbl 06362251
idMR: MR3238832
DOI: 10.21136/MB.2014.143847
.
Date available: 2014-07-14T08:11:53Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143847
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 1482-1518 (1992). Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Bakhvalov, N. S., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials.Translated from the Russian. Mathematics and Its Applications: Soviet Series 36 Kluwer Academic Publishers, Dordrecht (1989). MR 1112788
Reference: [3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and its Applications 5 North-Holland Publ. Company, Amsterdam (1978). Zbl 0404.35001, MR 0503330
Reference: [4] Besong, D. O.: Mathematical Modelling and Numerical Solution of Chemical Reactions and Diffusion of Carcinogenic Compounds in Cells.KTH Numerical Analysis and Computer Science TRITA NA E04152, Stockholm (2004).
Reference: [5] Canon, É., Pernin, J.-N.: Homogenization of diffusion in composite media with interfacial barrier.Rev. Roum. Math. Pures Appl. 44 23-36 (1999). Zbl 0994.35023, MR 1841959
Reference: [6] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17 Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047
Reference: [7] Davies, E. B.: Heat Kernels and Spectral Theory.Cambridge Tracts in Mathematics 92 Cambridge University Press, Cambridge (1989). Zbl 0699.35006, MR 0990239
Reference: [8] Carmo, M. P. do: Riemannian Geometry.Translated from the Portuguese. Mathematics: Theory & Applications Birkhäuser, Boston (1992). Zbl 0752.53001, MR 1138207
Reference: [9] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019/02
Reference: [10] Gelboin, H. V.: Benzo[a]pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes.Physiological Reviews 60 1107-1166 (1980). 10.1152/physrev.1980.60.4.1107
Reference: [11] Gossauer, A.: Struktur und Reaktivität der Biomoleküle.Willey-VCH-Verlag Weinheim (2003), German.
Reference: [12] Graf, I., Peter, M. A.: Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells.SIAM J. Math. Anal. Accepted.
Reference: [13] Jiang, H., Gelhaus, S. L., Mangal, D., Harvey, R. G., Blair, I. A., Penning, T. M.: Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry.Chem. Res. Toxicol. 20 1331-1341 (2007). 10.1021/tx700107z
Reference: [14] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Translated from the Russian.Springer, Berlin (1994). MR 1329546
Reference: [15] Marchenko, V. A., Khruslov, E. Ya.: Homogenization of Partial Differential Equations.Translated from the Russian. Progress in Mathematical Physics 46 Birkhäuser, Boston (2006). Zbl 1113.35003, MR 2182441
Reference: [16] Neuss-Radu, M.: Some extensions of two-scale convergence.C. R. Acad. Sci., Paris, Sér. I 322 899-904 (1996). Zbl 0852.76087, MR 1390613
Reference: [17] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 608-623 (1989). Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [18] Pelkonen, O., Nebert, D. W.: Metabolism of polycyclic aromatic hydrocarbons: Etiologic role in carcinogenesis.Pharmacological Reviews 34 189-212 (1982).
Reference: [19] Peter, M. A.: Coupled reaction-diffusion processes inducing an evolution of the microstructure: Analysis and homogenization.Nonlinear Anal. 70 806-821 (2009). Zbl 1151.35308, MR 2468421, 10.1016/j.na.2008.01.011
Reference: [20] Peter, M. A., Böhm, M.: Scalings in homogenisation of reaction, diffusion and interfacial exchange in a two-phase medium.Proceedings of Equadiff 11 International Conference on Differential Equations, Czecho-Slovak series Bratislava 369-376 (2005).
Reference: [21] Peter, M. A., Böhm, M.: Different choises of scaling in homogenization of diffusion and interfacial exchange in a porous medium.Math. Methods Appl. Sci. 31 1257-1282 (2008). MR 2431426, 10.1002/mma.966
Reference: [22] Peter, M. A., Böhm, M.: Multiscale modelling of chemical degradation mechanisms in porous media with evolving microstructure.Multiscale Model. Simul. 7 1643-1668 (2009). Zbl 1181.35019, MR 2505062, 10.1137/070706410
Reference: [23] Phillips, D. H.: Fifty years of benzo[a]pyrene.Nature 303 468-472 (1983). 10.1038/303468a0
Reference: [24] Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory.Lecture Notes in Physics 127 Springer, Berlin (1980). Zbl 0432.70002, MR 0578345
Reference: [25] Showalter, R. E.: Microstructure models of porous media.Homogenization and Porous Media U. Hornung Interdisciplinary Applied Mathematics 6 Springer, New York 183-202 (1997). MR 1434324, 10.1007/978-1-4612-1920-0_9
Reference: [26] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49 American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252
Reference: [27] Sims, P., Grover, P. L., Swaisland, A., Pal, K., Hewer, A.: Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide.Nature 252 326-328 (1974). 10.1038/252326a0
Reference: [28] Wloka, J.: Partial Differential Equations.Translated from the German. Cambridge University Press, Cambridge (1987). Zbl 0623.35006, MR 0895589
.

Files

Files Size Format View
MathBohem_139-2014-2_6.pdf 336.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo