Previous |  Up |  Next

Article

Title: Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities (English)
Author: Väth, Martin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 195-211
Summary lang: English
.
Category: math
.
Summary: We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters is considered for which instability is shown also when there are simultaneously obstacles for the activator and inhibitor, obstacles of opposite direction for the inhibitor, or in the presence of Dirichlet conditions. (English)
Keyword: reaction-diffusion system
Keyword: Signorini condition
Keyword: unilateral obstacle
Keyword: instability
Keyword: asymptotic stability
Keyword: parabolic obstacle equation
MSC: 34D20
MSC: 35B35
MSC: 35K51
MSC: 35K57
MSC: 35K86
MSC: 35K87
MSC: 47H05
MSC: 47H11
MSC: 47J20
MSC: 47J35
idZBL: Zbl 06362253
idMR: MR3238834
DOI: 10.21136/MB.2014.143849
.
Date available: 2014-07-14T08:14:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143849
.
Reference: [1] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047
Reference: [2] Eisner, J., Kučera, M., Väth, M.: Bifurcation points for a reaction-diffusion system with two inequalities.J. Math. Anal. Appl. 365 (2010), 176-194. Zbl 1185.35074, MR 2585089, 10.1016/j.jmaa.2009.10.037
Reference: [3] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840 Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [4] Kim, I.-S., Väth, M.: The Krasnosel'skii-Quittner formula and instability of a reaction-diffusion system with unilateral obstacles.Submitted to Dyn. Partial Differ. Equ. 20 pages.
Reference: [5] Kučera, M., Väth, M.: Bifurcation for a reaction-diffusion system with unilateral and {Neumann} boundary conditions.J. Differ. Equations 252 (2012), 2951-2982. Zbl 1237.35013, MR 2871789, 10.1016/j.jde.2011.10.016
Reference: [6] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Bifurcation Theory and Applications in Scientific Disciplines (Papers, Conf., New York, 1977) O. Gurel, O. E. Rössler Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [7] Turing, A. M.: The chemical basis of morphogenesis.Phil. Trans. R. Soc. London Ser. B 237 (1952), 37-72. 10.1098/rstb.1952.0012
Reference: [8] Väth, M.: Ideal Spaces.Lecture Notes in Mathematics 1664 Springer, Berlin (1997). Zbl 0896.46018, MR 1463946, 10.1007/BFb0093548
Reference: [9] Väth, M.: Continuity and differentiability of multivalued superposition operators with atoms and parameters. I.Z. Anal. Anwend. 31 (2012), 93-124. Zbl 1237.47065, MR 2899873, 10.4171/ZAA/1450
Reference: [10] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120 Springer, Berlin (1989). Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3
.

Files

Files Size Format View
MathBohem_139-2014-2_8.pdf 310.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo