Previous |  Up |  Next

Article

Title: On discreteness of spectrum of a functional differential operator (English)
Author: Labovskiy, Sergey
Author: Getimane, Mário Frengue
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 213-229
Summary lang: English
.
Category: math
.
Summary: We study conditions of discreteness of spectrum of the functional-differential operator \[ \mathcal {L} u=-u''+p(x)u(x)+\int _{-\infty }^\infty (u(x)-u(s)) {\rm d}_s r(x,s) \] on $(-\infty ,\infty )$. In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum. (English)
Keyword: spectrum
Keyword: functional differential operator
MSC: 34K06
MSC: 34K08
MSC: 34L05
idZBL: Zbl 06362254
idMR: MR3238835
DOI: 10.21136/MB.2014.143850
.
Date available: 2014-07-14T08:16:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143850
.
Reference: [1] Akhiezer, N. I., Glazman, I. M.: Theory of Linear Operators in Hilbert Space. Translated from the Russian.Dover Publications, New York (1993). MR 1255973
Reference: [2] Birman, M. S., Solomjak, M. Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Translated from the Russian.Mathematics and Its Applications. Soviet Series 5 D. Reidel Publishing Company, Dordrecht (1987). MR 1192782
Reference: [3] Cohn, D. L.: Measure Theory.Birkhäuser, Boston (1993). Zbl 0860.28001, MR 1454121
Reference: [4] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren I.Math. Ann. 109 (1934), 465-487. Zbl 0008.39203, MR 1512905, 10.1007/BF01449150
Reference: [5] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren II.Math. Ann. 109 (1934), 685-713. Zbl 0009.07205, MR 1512919, 10.1007/BF01449164
Reference: [6] Gelfand, I. M., Fomin, S. V.: Calculus of Variations. Translated from the Russian.Prentice-Hall, Englewood Cliffs (1963). MR 0160139
Reference: [7] Getimane, M., Labovskiy, S.: On discreteness of spectrum of a functional-differential operator.Funct. Differ. Equ. 20 (2013), 109-121. MR 3238835
Reference: [8] Ismagilov, R. S.: Conditions for semiboundedness and discreteness of the spectrum for one-dimensional differential equations.Dokl. Akad. Nauk SSSR 140 (1961), 33-36. MR 0140760
Reference: [9] Kantorovich, L. V., Akilov, G. P.: Functional Analysis.Nauka, Moskva (1984), Russian. Zbl 0555.46001, MR 0788496
Reference: [10] Labovskii, S.: Little vibrations of an abstract mechanical system and corresponding eigenvalue problem.Funct. Differ. Equ. 6 (1999), 155-167. Zbl 1041.34050, MR 1733234
Reference: [11] Labovskij, S. M.: On the Sturm-Liouville problem for a linear singular functional-differential equation. Translated from the Russian.Russ. Math. 40 (1996), 50-56. MR 1442139
Reference: [12] Labovskiy, S.: Small vibrations of mechanical system.Funct. Differ. Equ. 16 (2009), 447-468. MR 2573916
Reference: [13] Maz'ya, V., Shubin, M.: Discreteness of spectrum and positivity criteria for Schrödinger operators.Ann. Math. 162 (2005), 919-942. Zbl 1106.35043, MR 2183285, 10.4007/annals.2005.162.919
Reference: [14] Molchanov, A. M.: On conditions for discreteness of the spectrum of self-adjoint differential equations of the second order.Tr. Mosk. Mat. Obshch. 2 (1953), 169-199 Russian. MR 0057422
.

Files

Files Size Format View
MathBohem_139-2014-2_9.pdf 284.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo