Previous |  Up |  Next


spatially distributed hysteresis; reaction-diffusion equation; well-posedness
We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of hysteresis. These conditions are formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the spatial profile of the initial data.
[1] Aiki, T., Kopfová, J.: A mathematical model for bacterial growth described by a hysteresis operator. Recent Advances in Nonlinear Analysis\vadjust{\goodbreak} Proceedings of the international conference on nonlinear analysis M. Chipot World Scientific, Hackensack 1-10 (2008). MR 2410735
[2] Alt, H. W.: On the thermostat problem. Control Cybern. 14 (1985), 171-193. MR 0839520
[3] Apushinskaya, D. E., Uraltseva, N. N., Shahgholian, H.: Lipschitz property of the free boundary in the parabolic obstacle problem. St. Petersburg Math. J. 15 (2004), 375-391. DOI 10.1090/S1061-0022-04-00813-1 | MR 2052937
[4] Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis. SIAM J. Math. Anal. 45 (2013), 1328-1355. DOI 10.1137/120879889 | MR 3054588 | Zbl 1276.35107
[5] Gurevich, P., Tikhomirov, S.: Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 6610-6619. DOI 10.1016/ | MR 2965244 | Zbl 1252.35009
[6] Hoppensteadt, F. C., Jäger, W.: Pattern formation by bacteria. Lecture Notes in Biomath. 38 W. Jäger, H. Rost, P. Tautu (1980), 68-81 Springer, Berlin. DOI 10.1007/978-3-642-61850-5_7 | MR 0609347 | Zbl 0437.92023
[7] Hoppensteadt, F. C., Jäger, W., Pöppe, C.: A hysteresis model for bacterial growth patterns. Modelling of patterns in space and time. Lecture Notes in Biomath. 55 W. Jäger, J. D. Murray (1984), 123-134 Springer, Berlin. DOI 10.1007/978-3-642-45589-6_11 | MR 0813709
[8] Il'in, A. M., Markov, B. A.: Nonlinear diffusion equation and Liesegang rings. Dokl. Math. 84 (2011), 730-733 \kern 3sp Translated from Dokl. Akad. Nauk 440 (2011), 164-167 Russian. MR 2919131 | Zbl 1234.35292
[9] Ivasishen, S. D.: Green's matrices of boundary value problems for systems of a general form that are parabolic in the sense of I. G. Petrovskii. II. Mat. Sb., N. Ser. 114 (1981), 523-565. MR 0615340
[10] Klein, O.: Representation of hysteresis operators acting on vector-valued monotaffine functions. Adv. Math. Sci. Appl. 22 (2012), 471-500. MR 3100006
[11] Kopfová, J.: Hysteresis in biological models. Journal of Physics M. P. Mortell, R. E. O'Malley, A. V. Pokrovskii, V. A. Sobolev Proceedings of ``International Workshop on Multi-Rate Processess and Hysteresis'', Conference Series 55 130-134 (2007).
[12] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis. Translated from the Russian. Springer, Berlin (1989). MR 0987431 | Zbl 0665.47038
[13] Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Russian Nauka, Moskva (1967).
[14] Rothe, F.: Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics 1072 Springer, Berlin (1984). DOI 10.1007/BFb0099278 | MR 0755878 | Zbl 0546.35003
[15] Shahgholian, H., Uraltseva, N., Weiss, G. S.: A parabolic two-phase obstacle-like equation. Adv. Math. 221 (2009), 861-881. DOI 10.1016/j.aim.2009.01.011 | MR 2511041 | Zbl 1168.35452
[16] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften 258 Springer, New York (1994). DOI 10.1007/978-1-4612-0873-0_14 | MR 1301779 | Zbl 0807.35002
[17] Visintin, A.: Evolution problems with hysteresis in the source term. SIAM J. Math. Anal. 17 (1986), 1113-1138. DOI 10.1137/0517079 | MR 0853520 | Zbl 0618.35053
[18] Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences 111 Springer, Berlin (1994). DOI 10.1007/978-3-662-11557-2 | MR 1329094 | Zbl 0820.35004
Partner of
EuDML logo