Previous |  Up |  Next

Article

Title: Systems of reaction-diffusion equations with spatially distributed hysteresis (English)
Author: Gurevich, Pavel
Author: Tikhomirov, Sergey
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 239-257
Summary lang: English
.
Category: math
.
Summary: We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of hysteresis. These conditions are formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the spatial profile of the initial data. (English)
Keyword: spatially distributed hysteresis
Keyword: reaction-diffusion equation
Keyword: well-posedness
MSC: 35B30
MSC: 35K45
MSC: 35K57
MSC: 35M33
MSC: 47J40
idZBL: Zbl 06362256
idMR: MR3238837
DOI: 10.21136/MB.2014.143852
.
Date available: 2014-07-14T08:22:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143852
.
Reference: [1] Aiki, T., Kopfová, J.: A mathematical model for bacterial growth described by a hysteresis operator.Recent Advances in Nonlinear Analysis\vadjust{\goodbreak} Proceedings of the international conference on nonlinear analysis M. Chipot World Scientific, Hackensack 1-10 (2008). MR 2410735
Reference: [2] Alt, H. W.: On the thermostat problem.Control Cybern. 14 (1985), 171-193. MR 0839520
Reference: [3] Apushinskaya, D. E., Uraltseva, N. N., Shahgholian, H.: Lipschitz property of the free boundary in the parabolic obstacle problem.St. Petersburg Math. J. 15 (2004), 375-391. MR 2052937, 10.1090/S1061-0022-04-00813-1
Reference: [4] Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis.SIAM J. Math. Anal. 45 (2013), 1328-1355. Zbl 1276.35107, MR 3054588, 10.1137/120879889
Reference: [5] Gurevich, P., Tikhomirov, S.: Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 6610-6619. Zbl 1252.35009, MR 2965244, 10.1016/j.na.2012.08.003
Reference: [6] Hoppensteadt, F. C., Jäger, W.: Pattern formation by bacteria.Lecture Notes in Biomath. 38 W. Jäger, H. Rost, P. Tautu (1980), 68-81 Springer, Berlin. Zbl 0437.92023, MR 0609347, 10.1007/978-3-642-61850-5_7
Reference: [7] Hoppensteadt, F. C., Jäger, W., Pöppe, C.: A hysteresis model for bacterial growth patterns. Modelling of patterns in space and time.Lecture Notes in Biomath. 55 W. Jäger, J. D. Murray (1984), 123-134 Springer, Berlin. MR 0813709, 10.1007/978-3-642-45589-6_11
Reference: [8] Il'in, A. M., Markov, B. A.: Nonlinear diffusion equation and Liesegang rings.Dokl. Math. 84 (2011), 730-733 \kern 3sp Translated from Dokl. Akad. Nauk 440 (2011), 164-167 Russian. Zbl 1234.35292, MR 2919131
Reference: [9] Ivasishen, S. D.: Green's matrices of boundary value problems for systems of a general form that are parabolic in the sense of I. G. Petrovskii. II.Mat. Sb., N. Ser. 114 (1981), 523-565. MR 0615340
Reference: [10] Klein, O.: Representation of hysteresis operators acting on vector-valued monotaffine functions.Adv. Math. Sci. Appl. 22 (2012), 471-500. MR 3100006
Reference: [11] Kopfová, J.: Hysteresis in biological models.Journal of Physics M. P. Mortell, R. E. O'Malley, A. V. Pokrovskii, V. A. Sobolev Proceedings of ``International Workshop on Multi-Rate Processess and Hysteresis'', Conference Series 55 130-134 (2007).
Reference: [12] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Translated from the Russian. Springer, Berlin (1989). Zbl 0665.47038, MR 0987431
Reference: [13] Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Russian Nauka, Moskva (1967).
Reference: [14] Rothe, F.: Global Solutions of Reaction-Diffusion Systems.Lecture Notes in Mathematics 1072 Springer, Berlin (1984). Zbl 0546.35003, MR 0755878, 10.1007/BFb0099278
Reference: [15] Shahgholian, H., Uraltseva, N., Weiss, G. S.: A parabolic two-phase obstacle-like equation.Adv. Math. 221 (2009), 861-881. Zbl 1168.35452, MR 2511041, 10.1016/j.aim.2009.01.011
Reference: [16] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Grundlehren der Mathematischen Wissenschaften 258 Springer, New York (1994). Zbl 0807.35002, MR 1301779, 10.1007/978-1-4612-0873-0_14
Reference: [17] Visintin, A.: Evolution problems with hysteresis in the source term.SIAM J. Math. Anal. 17 (1986), 1113-1138. Zbl 0618.35053, MR 0853520, 10.1137/0517079
Reference: [18] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111 Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
.

Files

Files Size Format View
MathBohem_139-2014-2_11.pdf 348.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo