Previous |  Up |  Next

Article

Title: Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes (English)
Author: Heinemann, Christian
Author: Kraus, Christiane
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 315-331
Summary lang: English
.
Category: math
.
Summary: This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent domain which characterizes the nondegenerated elastic material regions. We choose a notion of weak solutions which consists of weak formulations of the Cahn-Hilliard system and the momentum balance equation, a variational inequality for the damage evolution and an energy inequality. For the introduced degenerating system, we prove global-in-time existence of weak solutions. The main results are sketched from our recent paper [WIAS preprint no. 1759 (2012)]. (English)
Keyword: Cahn-Hilliard system
Keyword: phase separation
Keyword: complete damage
Keyword: elliptic-parabolic degenerating system
Keyword: linear elasticity
Keyword: energetic solution
Keyword: weak solution
Keyword: doubly nonlinear differential inclusion
Keyword: existence result
Keyword: rate-dependent system
MSC: 34A12
MSC: 35A01
MSC: 35D30
MSC: 35J50
MSC: 35K55
MSC: 35K65
MSC: 35K85
MSC: 35K92
MSC: 35M30
MSC: 49S05
MSC: 74A45
MSC: 74G25
MSC: 82B26
idZBL: Zbl 06362261
idMR: MR3238842
DOI: 10.21136/MB.2014.143857
.
Date available: 2014-07-14T08:36:15Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143857
.
Reference: [1] Bartkowiak, L., Pawłow, I.: The Cahn-Hilliard-Gurtin system coupled with elasticity.Control Cybern. 34 1005-1043 (2005). Zbl 1119.35099, MR 2256463
Reference: [2] Bonetti, E., Colli, P., Dreyer, W., Gilardi, G., Schimperna, G., Sprekels, J.: On a model for phase separation in binary alloys driven by mechanical effects.Physica D 165 48-65 (2002). Zbl 1008.74066, MR 1910617, 10.1016/S0167-2789(02)00373-1
Reference: [3] Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials.J. Differ. Equations 218 91-116 (2005). Zbl 1078.74048, MR 2174968, 10.1016/j.jde.2005.04.015
Reference: [4] Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strains.Z. Angew. Math. Phys. 60 205-236 (2009). Zbl 1238.74005, MR 2486153, 10.1007/s00033-007-7064-0
Reference: [5] Carrive, M., Miranville, A., Piétrus, A.: The Cahn-Hilliard equation for deformable elastic continua.Adv. Math. Sci. Appl. 10 539-569 (2000). Zbl 0987.35156, MR 1807441
Reference: [6] Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power.Int. J. Solids Struct. 33 1083-1103 (1996). MR 1370124, 10.1016/0020-7683(95)00074-7
Reference: [7] Garcke, H.: On Mathematical Models for Phase Separation in Elastically Stressed Solids. Habilitation thesis.University Bonn (2000).
Reference: [8] Gurtin, M. E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.Physica D 92 178-192 (1996). Zbl 0885.35121, MR 1387065, 10.1016/0167-2789(95)00173-5
Reference: [9] Heinemann, C., Kraus, C.: Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage.Adv. Math. Sci. Appl. 21 321-359 (2011). Zbl 1253.35179, MR 2953122
Reference: [10] Heinemann, C., Kraus, C.: Existence results for diffuse interface models describing phase separation and damage.Eur. J. Appl. Math. 24 179-211 (2013). Zbl 1290.35265, MR 3031777, 10.1017/S095679251200037X
Reference: [11] Heinemann, C., Kraus, C.: A degenerating Cahn-Hilliard system coupled with complete damage processes.WIAS preprint no. 1759, 23 pages (2012). MR 3280841
Reference: [12] Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model.Math. Models Methods Appl. Sci. 23 565-616 (2013). Zbl 1262.74030, MR 3021776, 10.1142/S021820251250056X
Reference: [13] Mielke, A.: Complete-damage evolution based on energies and stresses.Discrete Contin. Dyn. Syst., Ser. S 4 423-439 (2011). Zbl 1209.74010, MR 2746382, 10.3934/dcdss.2011.4.423
Reference: [14] Mielke, A., Roubíček, T., Zeman, J.: Complete damage in elastic and viscoelastic media and its energetics.Comput. Methods Appl. Mech. Eng. 199 1242-1253 (2010). Zbl 1227.74058, MR 2601392, 10.1016/j.cma.2009.09.020
Reference: [15] Nor, F. M., Keat, L. W., Kamsah, N., Tamin, M. N.: Damage mechanics model for interface fracture process in solder interconnects.10th Electronics Packaging Technology Conference 821-827 (2008).
Reference: [16] Rocca, E., Rossi, R.: A degenerating PDE system for phase transitions and damage.Math. Models Methods Appl. Sci., arXiv:1205.3578v1 (2012), 53 pages. MR 3192591
Reference: [17] Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain-existence and regularity results.ZAMM, Z. Angew. Math. Mech. 90 88-112 (2010). Zbl 1191.35159, MR 2640367, 10.1002/zamm.200900243
.

Files

Files Size Format View
MathBohem_139-2014-2_16.pdf 311.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo